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Abstract  Shortest path network interdiction is a combinatorial optimization problem on an
activity network arising in a number of important security-related applications. It is
classically formulated as a bilevel maximin problem representing an “interdictor” and
an “evader.” The evader tries to move from a source node to the target node along
a least-cost path while the interdictor attempts to frustrate this motion by cutting
edges or nodes. The interdiction objective is to find an optimal set of edges to cut
given that there is a finite interdiction budget and the interdictor must move first. We
reformulate the interdiction problem for stochastic evaders by introducing a model
in which the evader follows a Markovian random walk guided by the least-cost path
to the target. This model can represent incomplete knowledge about the evader, and
the resulting model is a nonlinear 0-1 optimization problem. We then introduce an
optimization heuristic based on betweenness centrality that can rapidly find high-
quality interdiction solutions by providing a global view of the network.

Keywords network interdiction; stochastic optimization; guided random walk; betweenness
centrality

1. Introduction

Mathematical modeling of network interdiction originated in the study of military sup-
ply chains and interdiction of transportation networks (Ghare et al. [11], McMasters and
Mustin [16]). The problem is currently studied in different classes of networks and in a
variety of contexts, and finds applications in countering of nuclear proliferation programs
(Morton et al. [18]), control of infectious diseases (Pourbohloul et al. [22]), and disruption of
terrorist networks (Memon and Larsen [17]). The underlying networks may represent trans-
portation networks, as well as social or activity networks. Recent interest in the problem has
been in part due to the threat of smuggling of nuclear materials and devices (Pan et al. [21]).
Interdiction corresponds to the installation of special radiation-sensitive detectors across
transportation links.

The problem is often posed in terms of two agents called “interdictor” and “evader” where
the evader attempts to minimize some objective function in the network, e.g., distance,
cost, or risk when traveling from network location s to location ¢, while the interdictor
attempts to limit success by removing network nodes or edges. The interdictor has limited
resources and can thus only remove a finite set of nodes or edges. In the simplest formulation,
the interdictor seeks to identify a set of edges (or nodes) on the network whose removal
maximizes the least cost from a source to a destination node, while the evader seeks to find
and traverse a best unimpeded path. This interdiction problem is known as the “most vital
edges” (or “most vital nodes”) problem (Corley and Sha [8]) and it has been shown to be
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NP-hard (Bar-Noy et al. [3]) and NP-hard to approximate to better than a factor of 2 (Boros
et al. [6]). Methods for solving network interdiction problems have included exact algorithms
for solving integer programs, such as branch-and-bound, as well as decomposition methods
to rebuild the network by iteratively adding relevant paths to reduce the size of both the
underlying network and the number of binary decision variables. A more recent approach,
based on structure-dependent cutting planes, exploits the relationship between the ordered
set of evasion paths and binary interdiction variables (Pan and Morton [20]).

A common assumption in many studies is that there is perfect knowledge of hard-to-
compute network parameters, such as the cost to the evader to traverse an edge in terms of
resource consumption or probability of detection. However, it is clear that the evader, and,
to a lesser extent, the interdictor, have unreliable and incomplete information about the
network. These uncertainties place the interdiction problem within stochastic optimization,
where one seeks to find those edges that are vital on average. Indeed, under uncertainty the
evader must be described in probabilistic terms. By constructing such probabilistic evader
models one can expect to find good interdiction solutions even when the evader’s motion
cannot be fully known. The promise of such a solution has inspired several recent studies
in stochastic interdiction (Morton et al. [18], Atkinson et al. [1], Bayrak and Bailey [5],
Janjarassuk and Linderoth [15], Reich and Lopes [23], Gutfraind et al. [13], Dimitrov and
Morton [9]).

Failure to account for evader uncertainty can lead to suboptimal decisions, namely, solu-
tions that do not maximize (and even decrease) the evader’s expected cost to reach the
target. Consider for instance the network in Figure 1. There are four paths from the source
to the target: one each through nodes 1, 2, 3 and the one direct path (0,5) with costs 9, 8, 8,
and 8.01, respectively. If only one edge can be removed, the solution in the least-path-cost
formulation is to remove edge (4,5) which increases the path cost from 8.0 to 8.01. However
if the evader is unable to determine which path has the least cost and takes any path with
equal (or nearly equal) probability, then this solution is not optimal. Interdiction at (4,5)
actually decreases the expected cost from ~8.25 to 8.01, because it removes the costly path

FI1GURE 1. Example network where the shortest path interdiction formulation produces a
suboptimal solution when interdicting a single edge.
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Notes. Interdicting that edge (4,5) decreases the expected path cost. Interdicting any one of (0,2), (2,4),
(0,3), or (3,4) increases the expected path cost.
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through node 1. The optimal choice is interdiction of any one of the edges (0, 2), (2,4), (0,3),
or (3,4), which increases the expected cost from ~8.25 to ~8.33.

This example illustrates the effects of evader randomness on interdiction choices. If the
evader chooses suboptimal (more random) paths but the interdictor assumes the evader
acts optimally then the interdiction solution can actually help the evader. In the opposite
case, when the evader always chooses optimal paths but the interdictor assumes suboptimal
evader choices, interdiction cannot possibly help the optimal evader: the least-cost path
cannot become shorter if some edges were cut.

In this paper we introduce a Markovian network interdiction model which can describe
a wide range of network evaders (§2). We then demonstrate the general framework with a
simple model based on evader decision-making mechanisms (§4). Finally we develop efficient
heuristic algorithms for the interdiction problem based on the structure of the graph and
then present performance results comparing various heuristic methods (§5).

2. The Interdiction Model

Our interdiction formulation is a stochastic generalization of the max-min shortest path
interdiction problem (termed the “least-cost path” interdiction problem, to be exact) (Ghare
et al. [11], McMasters and Mustin [16], Israeli and Wood [14]). In the least-cost path formu-
lation an evader attempts to traverse a network on a path from an origin s to a destination ¢.
Let p be some path between s and ¢ in a graph G(N,A) with the set of nodes N and
the set of weighted edges A. In this paper, a path is a sequence of edges of the form,
(s,i1),(41,%2),- .., (ix,t), and any node, except ¢, can be visited more than once on a path.
Let ¢(p) be the path cost computed by summing the cost C;; over the edges (4,5) of p, and
any self-looped edge has zero cost, C;; =0. The edge costs are assumed to be given in the
problem and may depend on direction (in the case that G(N, A) is a directed graph). Here
“edge cost” is used interchangeably with “edge weight.”

The network interdiction strategy is represented by an interdiction set X which is a subset
of the edge set A of cardinality b (budget). The decision variable x;; is set to 1 if edge
(i,j) € X, ie., (4,7) is interdicted, and x;; = 0 otherwise. Interdiction increases the cost of
traversing (i,7) by a constant D;; > 0. One may write C{j = Cjj + 4 D;; but it is more
convenient to use Cj; at all times to denote cost that includes possible interdiction. This
makes the matrix C a function of X. When the value of D;; is very large all paths avoid the
interdicted edge (7,7) (assuming that there is an alternative path) which effectively removes
the edge (7,7) from the graph. Such an edge-cost model of interdiction is more general than
the model based on outright cutting of edges, and avoids damaging the graph topology
(cases where nodes become cut off from the target).

In the shortest path model, the evader only travels on paths of lowest cost, and is fully
aware of increases in edge costs caused by interdiction decisions. This gives the optimization
problem

XCIX{?)}E'l:b pr»’I:‘lIl:'%“C(p)’ (1)
where ¢(p) is implicitly a function of X, and PT is the set of paths from s to ¢t. The above
formulation is for interdiction of edges but of course, a similar problem could be considered
for node interdiction (by introducing for all ¢ € N node costs D; and decision variables on
nodes, ;).

A stochastic version of the interdiction problem can be constructed by supposing that an
evader may take any path from s to ¢, according to some probability distribution, rather than
always choosing a least-cost path. Randomness in the evader path decision could be due to
our lack of knowledge of how the evader travels through the network. It could also be caused
by the evader’s uncertainty about interdiction decisions X or network costs, mistaken cost
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computations, or possibly even by intent to increase unpredictability. Suppose the evader
selects path p with probability P(p). The expected cost of traveling from s to ¢ is then

E[d= ) Pp)cp). (2)

pePT

The interdiction problem becomes

max Y P(p)e(p), (3)

XCA,|X|=b
CA,IX| pePT

where P(p) is now the probability of traversing a path. Both P(p) and the path cost ¢(p)
depend on the interdiction set X, but the notation here will not represent this dependence
since it is pervasive: from the evader’s point of view, the interdiction set is part of the graph
structure. The interdiction set X will be discussed again only in §5 dealing with interdiction
algorithms.

The probability P(p) implicitly contains the evader’s strategy. The shortest-path optimiza-
tion problem (1) is clearly just a special instance of (3) when the expectation is conditioned
on traversal of only least-cost paths.

To compute the expected cost E[c], we rewrite it in terms of the edge costs and the number
of visits to each edge. If Fj; is the expected number of visits of edge (i,7) by an evader, then

Lemma 1.

Eld= > Pp)clp)= > CiF;. (4)

pePT (4,5)€A
Proof. By definition F;; = ZpEPT: (ir j)ep
because paths may revisit (¢,7). The equivalency follows as

Eld =Y P(p)ep),

P(p), and F;; can in general be larger than 1

peEPT
pePT (i,4)€p

= Z Cij P(p),

(i,5)€A pEPT: (i,j)€P

(i,5)€A

The expected cost F[c] is now expressed through the expected number of visits to all
edges (the F;; values). The latter quantity may be hard to compute in general because every
evader path could in principle visit edge (4, j), while the number of possible paths can be very
large and even unbounded. Fortunately, one particular class of stochastic models—Markov
chains—gives a closed-form expression for Fj;.

3. Markovian Evaders

We model the stochastic evader as a Markov chain that has its states at the nodes of the
network. In the most general case, the chain is completely described by (1) a distribution
of starting nodes, a, and (2) a Markovian transition probability matrix, M. In the next
section, we will provide derivations of M for some realistic applications by examining the
decision-making mechanisms of a rational evader frustrated by uncertain information. Such
an evader tends to make transitions to move closer to the target.

Consider for now the most general case. The motion of the evader is just a Markov chain
with an absorbing state at the target node ¢. An element M;; of the transition probability
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matrix is the probability of motion from node i to node j along edge (4, 7). The matrix M
must satisfy two conditions: (1) Absorption at t: My =1 and M; =0 for all i # ¢, and
(2) Access to t: from any starting state ¢ # ¢ there is a positive probability of reaching
state ¢ in a finite number of transitions. Because of condition (1) the transition matrix of
an absorbing Markov chain can be arranged into the following canonical form:

(M R
M<0 1).

Here the matrix M (n—1 by n— 1) contains the transition probabilities among transient
states. The matrix R (n—1 by 1) specifies the probabilities of transition from the transient
states to the absorbing state.

Similarly, the edge cost matrix for an absorbing Markovian evader takes a specific form:

C s
C= .
(2 %)
Here the matrix C (n—1 by n—1) contains the costs for transition among transient states.
The matrix S (n — 1 by 1) specifies the costs for moving to the absorbing state, while Z
(1 by n—1) are cost for edges out of the absorbing states—those edges are never traversed.

The element Cy; =0 implies that there is no cost to remain at the target node ¢.
Given the matrix M, the Fundamental Matriz N of the chain is

N=(I-M)".

Theorem 1. Element N;; of the fundamental matriz gives the expected number of visits to
state j if starting at state i (Grinstead and Snell [12, Theorem 11.4]).

In general the starting state of the evader is given by a distribution a over the nodes.
For convenience, the absorbing node ¢ is excluded from a, which is n — 1-dimensional. The
expected number of visits to edge (¢,j) before absorption at ¢ is as follows.

Corollary 1.
Fij = [aN]iMij. (5)

The expected cost Elc] for a Markovian evader can be found by substituting (5) into (1)
(Saerens et al. [24]).

Theorem 2. R
E[c] = aN diag]MC” + RS”], (6)

where diag[ﬁaT + RST] denotes the column vector of the diagonal elements of matriz
MCT +RS”.

In a special case where the edge cost is always 1, i.e., C;; =1, V(i,5) € A, E|c| in (6)
reduces to the well-known expression for expected time-to-absorption: alNe.

The objective in the Markovian network interdiction problem is to maximize E[c]. In the
interdiction model, edge cost depends on the interdiction variable X. In turn, the transition
matrix and the fundamental matrix depend on X too. Therefore, this results in the nonlinear
optimization problem .

max aNdiagMC” +RS7]. (7)

XCA,|X|=b
This optimization problem could be termed the Single Markovian Evader Network Interdic-
tion problem. The distribution of starting nodes is assumed to be given and independent of
the interdiction strategy X, while the M matrix is assumed to be determined as soon as the
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graph and X are known. In numerical computations the most computationally demanding
part resides in finding aN = a(I — M) !, which requires Gaussian elimination in general.

The problem in (7) can be generalized for the case of multiple evaders where each evader
represents a threat scenario or an adversarial group. Each evader k£ then has certain prob-
ability w® of occurring (3°, w® = 1), as well as a distinctive source distribution a*),
target node t*) and transition matrix M(*). The generalized objective is a weighted sum of
Equation (6) over all evaders.

A recent paper considered a similar problem modeled as a Markov Decision Process (MDP)
(Dimitrov and Morton [9]). In that MDP model interdicting a directed edge only changes
the transition probabilities of the edge’s source-node. Hence the MDP model can be trans-
formed to an integer linear program. In our approach, interdicting an edge affects transition
probabilities of all nodes which have directed paths to the source-node (see details in §4).
As a result, our interdiction problem (7) is a nonlinear program.

4. Evader Models

As was noted in the introduction, the evader may often be unable to determine correctly
the least-cost paths to the target because of incomplete and inaccurate information about
the network topology, interdiction decisions, or costs along alternative paths.

We now develop concrete Markovian models that incorporate uncertainty in the path
of the evader. These types of models have analogues in other contexts. For example, a
similar model was developed for routing in ad-hoc wireless networks. In that application the
objective is to transmit messages through the network while reducing latencies and traffic
loads (Barrett et al. [4]).

4.1. The Least-Cost-Guided Evader

We suppose that at each node i the evader will consider several paths from i to ¢ and select
the one that appears to have the lowest cost. Putting this in the content of a Markovian
model, we define p; be any least-cost path from i to ¢, with cost denoted by ¢(p;). Suppose
the evader has a destination ¢ and node j is any node in the neighborhood of i (j € G;). The
transition probability from ¢ to j is

e—Me(pi)—Cij—c(py))

My = Zjec, e—Mc(pi)=Cij—c(p;))’ (®)

where A >0 is a parameter (see Figure 2).

The adherence to least-cost paths is determined by the parameter A. When A — oo the
evader moves deterministically along the least-cost path (or paths) and when A — 0 the
motion is perfectly random. The least-cost path has the highest probability, but the differ-
ence with other paths vanishes as A — 0. Hence, the model can be called the “least-cost-
guided evader.”

Notice that although M;; values in Equation (8) depend on the cost of least-cost path,
when A < oo this dependence is a smooth function of path costs. Thus the new formulation
provides a more desirable description of evader motion because it avoids the sensitivity to
path costs seen in the shortest-path evader model. The process of computing the probabilities
involves running Dijkstra’s algorithm to find the distance to the target node from each
node 4, which gives ¢(p;).

The expression for M;; in Equation (8) could be used to describe a variety of evaders, even
evaders who do not reevaluate their paths at every node. For example, an evader could decide
in advance which path to follow, but occasionally make mistakes due to poor information.
In those cases the Markovian framework and this particular model provide an approximate
description of the stochasticity, assigning substantial nonzero probability to paths with cost
near the least cost.
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FIGURE 2. Computation of the transition probabilities Mj;.
Cy+e(p)=4

Notes. The least-cost path from node 7 to the target ¢ is the path p; (thick grey) with cost ¢(p;) = 3. Through
node j the shortest path to ¢ is (thick black) path p; with cost Cy; +c(p;) =4.

4.2. The Least-Risk-Guided Evader

In some applications the evader may base decisions on the risk of crossing an edge rather
than the cost. In those cases, each edge in the network is assigned a value Y;; for the
probability of successful evasion, instead of a cost C;;. The evader attempts to find the path
to the target ¢ that offers the greatest probability of evasion which is is just the product of
those Y;; values along the path.

Let ¢;; be the probability of successful evasion on a path consisting of the edge (4, 7) and
then of least-risk paths from j to the target. One choice is to assume that an evader would
traverse edge (4,7) with probability proportional to ¢;;, or more generally, proportional to a

positive power of g;;:
A
i
M;j (”) ; (9)
qix
where A > 0 is a parameter, ¢;, = max; g;; is the probability of evasion if any least-risk path
from i to the target is followed (the constant of proportionality is found from j M;; =1).

4.3. The Nonretreating Evader

A simple variant of the least-cost-guided model is the nonretreating evader. In this model it
is assumed that an evader always moves to nodes that are closer to the target node ¢ than
the current node. To represent this model, we add a 0-1 coefficient z;; to Equation (8). Set
z;; = 0 if node ¢ is at least as close to the target as node j, and z;; = 1 otherwise. Namely,
zi; =0 if ¢(p;) < ¢(p;), where c(p;) and c(p;) are the smallest costs of paths to the target
from nodes 7 and j, respectively, computed by summing the edge weights. The nonretreating
evader model requires accurate information about the linear ordering of true node distance
values, ¢(p;), for all nodes i.

An interesting effect of such nonretreating motion is that the evader will never cross a
node or an edge twice. Consequently the set of nodes becomes a partially ordered set and as
a result, there exists a relabeling o of the nodes such that if ¢(p;) > ¢(p;) then o (i) > o(j).
A simple (nonunique) procedure is to label the target node t as 0 (o(¢) = 0) and then rank the
nodes in the order of their distance (cost) along least-cost path to ¢, breaking ties arbitrarily.
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Computationally, this is the same as the order the nodes are reached by a shortest path
(Dijkstra’s) algorithm starting at ¢. The transition probability becomes

—

. — M, c(pi) > c(py),
i —
0,  c(pi) <clpy).

In this case all paths must reach the target after at most [N| — 1 steps, where |N| is the
number nodes in GG, and hence M becomes nilpotent of power |N|— 1. Moreover, by labeling
the nodes up in order of increasing cost, M can be written as a lower-triangular matrix with
zero diagonal. For example, if the evader traverses a 2 x 3 grid with the target at one corner
then one possible o gives the matrix

0
1 0
= 1 0 0
M= 0 1 0 0
0 05 05 0 0
0 0 0 05 05 0

The special matrix structure facilitates an order-of magnitude speedup in the computation
of Equation (6). For a general M, computing a(I — M)f1 involves Gaussian elimination at
a cost of 2|N|?/3 operations. For a nilpotent lower-triangular M the cost falls to O(|N|?)
since we can use backward-forward substitutions instead of Gaussian elimination. The cost
of computing the objective function Equation (6) is also expected to drop to O(|N|?) despite
the need to reorder the matrix C when the nodes are relabeled.

5. Solving the Markovian Interdiction Problem

The challenge of network interdiction comsists of developing both realistic models and
tractable algorithms. The Markovian evader model adds realism but does not reduce the
computational complexity of finding good interdiction solutions. Indeed it is clear that the
Markovian model is computationally hard because in the limit of A — oo, the model becomes
the least-cost interdiction problem which is NP-Hard (Ball et al. [2], Bar-Noy et al. [3])
and also hard to approximate (Boros et al. [6]). Therefore, this section discusses solution
heuristics based on network structure.

A common approach to solving many combinatorial optimization problems is based
on local, or neighborhood, search algorithms such as simulated annealing (Osman and
Kelly [19]). But those general-purpose local search algorithms do not scale well to larger
problems or find poor solutions. The solution space may be exponential in the budget so
any iterative improvement process of local search can only explore a very small fraction of
solutions in a polynomial number of steps. It follows that high-quality solutions can only
come from more specialized solvers that exploit the structure of the interdiction problem.
We explore algorithms based on ranking functions that rank edges according to global infor-
mation about graph structure.

5.1. Betweenness Centrality Heuristic

The most successful ranking function we found is derived from the shortest-path betweenness
centrality. The shortest-path betweenness centrality of an edge is the fraction of least-cost
paths between all pairs of nodes in a network that cross the edge (Freeman [10]). This metric
identifies those edges that are critical to connectivity within a network, such as bridge edges
that joins two graph components, because they participate in a large number of least-cost
paths linking nodes on a network.
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We constructed an heuristic based on shortest-path betweenness centrality by considering
only paths between the sources a and the target ¢t of the evader. Recall that a, is the
probability that the evader would start at node s. Let o4, x be the number of least-cost
paths between nodes s and the target node ¢ in the graph with interdiction set X . Similarly,
let o5, x(e) be the number of those paths that pass through edge e. Therefore, we define
the source-weighted centrality of edge e with respect to t as the sum

Hy(e)= Y o, 22X (10)

g
sit#seV st, X

Notice that this quantity needs to be recomputed during execution of an interdiction prob-
lem: as the interdiction set X is increased, the costs of the edges change and so are
the least-cost paths. An algorithm for calculating a metric of this kind for all e € A in
O(]A| +|N|log |N|) time is found in Brandes [7]. In the case of multiple evaders, the heuristic
is computed for each evader and weighted based on w*).

5.2. Algorithms

We use the betweenness heuristic Hx (e) to rank the edges e in the network given the inter-
diction set X. This heuristic leads to a simple algorithm, termed Betweenness (Algorithm 1),
that performs a sequential selection of edges.

Algorithm 1 (Betweenness algorithm using global heuristic H for budget b)

X+

while >0 do
X « X U{argmax ¢ 4\ x Hx/(e)}, resolving ties arbitrarily
b+—b—-1

Output(X)

The betweenness algorithm is fast since it does not evaluate the objective function (the
expected cost to the evader). Rather, the algorithm computes the ranking heuristic and then
re-evaluates it after the interdicted edge is chosen. The heuristic is called b times: once for
each of the budgeted edges.

For comparison we also use a more computationally-expensive greedy algorithm (Algo-
rithm 2) that constructs the interdiction set X incrementally. At each of the b steps,
the greedy algorithm examines every edge e € A\ X and computes the updated objective
value from adding e, E[c| X U{e}]. This value is found by updating the cost of travers-
ing edge e and using Equation (6). The algorithm then selects an edge with the highest
increase (Ax(e)).

Algorithm 2 (Greedy algorithm for the construction of the interdiction set X with
budget b)
X+o
while b >0 do
for all e€ A do
Ax(e):=FE[c| X U{e}] - Elc| X]
X« X U{argmax,¢c 4\ x Ax(e)}, resolving ties arbitrarily
b—b—-1
Output(X)

5.3. Performance Results

We now demonstrate the performance of the Greedy and Betweenness algorithms on a sam-
ple network interdiction problem and show the effect of varying the randomness parameter .
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FIGURE 3. The expected cost of reaching the target from the source as a function of the parameter A
for an example network.
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Notes. For large values of A\ the model chooses only the shortest path and the expected cost is lowest. As
A decreases the cost increases as the paths become more random. For A = 0 the paths are completely random
and the cost is at the maximum. The expected cost is calculated by Equation (6) with the evader model M
given by Equation (8). The network is a 10 x 10 directed grid with 10 randomly added shortcut edges and
the target and source are chosen randomly. Each of the edges have weights chosen uniformly from [0.5,1.5].
The marked points will be used in performance evaluations, presented in Figure 4.

We used a network which consists of a 10 x 10 grid of directed edges with 10 added shortcuts
between random pairs of nodes for a total of 420 edges. Weights were assigned to each edge
by choosing uniformly at random from the interval [0.5,1.5]. We selected 2 distinct targets
at random (i.e., 2 evaders) each with 5 source locations.

The motion of the evader followed the least-cost-guided model. In this model, the effect
of the parameter A\ on the expected cost for the evader (before interdiction) is not linear,
as shown in Figure 3. At low values of A the motion is random and the cost is the highest.
As ) is increased the evader follows paths that are closer to any optimal path and the cost
decreases continuously toward the minimum achievable at large A. The transition between
the cost of random motion and the optimal cost occurs rapidly over a small range of A
where the most diverse behavior is found. This transition in behavior was observed in other
random and structured graphs and real-world networks that we examined and is a feature
of the nonlinear dependence of the path probabilities from Equation (8).

Figure 4 shows characteristic performance results for both the Greedy and Betweenness
algorithms for various A. The performance is measured in terms of the expected cost given
by Equation (6). Interdiction of an edge causes the weight of the edge to increase by a fixed
value D;;. We set the added increase to be half the diameter of the network which in this
case is D;; =4.5.

For small budgets the Betweenness algorithm and Greedy algorithm produce comparable
results as measured by the increase in cost for all A values. The Betweenness algorithm is con-
siderably cheaper in computational cost. As the budget is increased the Betweenness heuris-
tic performs very well for larger A\. But for smaller A, as the evader randomness increases,
the algorithm performance difference diverges indicating that the Betweenness heuristic is
no longer effective. At very low values of A the evader motion is random and no algorithm
is expected to be effective.

A particularly interesting phenomenon is the nonmonotonicity of the expected cost.
Namely, for some low X values the expected cost E[c| sometimes actually decreases after the
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FIGURE 4. Comparison of the Greedy (2) and Betweenness (1) algorithms for given budgets on the
sample grid network described in Figure 3.
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Notes. Four different values of A are shown corresponding to different levels of randomness in the evader
path selection. When the randomness of the evader is low (high ) the Betweenness algorithm performs
very well compared to the higher computational cost Greedy algorithm. As the randomness increases the
algorithms’ performance diverges after very small budgets—demonstrating that the Betweenness heuristic
is no longer effective. At low values of A the evader motion is random and no algorithm will be effective. The
convergence of the algorithms at large budgets occurs because we do not allow an edge to be interdicted
more than once and at that budget every edge in the graph is interdicted and the costs are the same.

interdiction set is enlarged. This effect was anticipated by the example in Figure 1 and it
occurs because the behavior of the randomizing evader is fundamentally different from the
behavior of the max-min evader. If we relax the budget constraint |X| =15 to |X| <b, the
objective will be nondecreasing in the Greedy algorithm.

Other realizations of 10 x 10 grid networks produce similar results and are not shown
here. In addition to this example we have explored the performance of the algorithms on
other networks including real-world of transportation networks, such as the Washington,
DC transportation transit time network and the Rome city road network. The computation
cost of the Greedy algorithm becomes prohibitive in these and other urban, national and
international transportation systems. Those networks have 10° — 107 edges, depending on
the spatial resolution. The Greedy algorithm running time scales as O(|A||N|?) for the least-
cost-guided evader model, while the Betweenness algorithm remains feasible even on very
large instances because its running time scales as O(]4| + |N|log |N]).

6. Conclusions and Outlook

Practical instances of network interdiction must invariably address the uncertainty in the
network structure and evader behavior. Such behavior can be modeled using the proposed
Markov chain approach, which achieves increased realism while remaining analytically pen-
etrable. To summarize, the main contribution of this work are:

e a demonstration of the fundamental advantages of stochastic models over least-cost
models,

e a stochastic model of the evader motion based on a Markovian guided random walk,
and

e a scalable interdiction algorithm based on a specialized betweenness centrality function.
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Future research must address both computational and modeling challenges in stochastic
network interdiction. Current algorithms are effective in the case where the evader motion
is partially predictable. It is not known whether more specialized heuristics can be more
successful in the case of highly-stochastic adversaries. In the current model the randomness
comes only from information constraints. In some problems computational constraints on
the evader also play a role in determining the motion. Models that account for both kinds
of constraints promise further gains in realism and would expand the range of applications
where network interdiction could be used.
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