
ICS 2011
12th INFORMS Computing Society Conference Computing Society

c© 2011 INFORMS | isbn 978-0-9843378-1-1
doi 10.1287/ics.2011.0018

Collective Behavioral Patterns in a Multichannel
Service Facilities System: A Cellular
Automata Approach

Carlos A. Delgado, A. van Ackere
HEC Lausanne, University of Lausanne, 1015 Dorigny, Lausanne, Switzerland
{carlos.delgado@unil.ch, ann.vanackere@unil.ch}
E. R. Larsen, K. Sankaranarayanan
Institute of Management, University of Lugano, 6904 Lugano, Switzerland
{erik.larsen@usi.ch, karthik.sankaranarayanan@usi.ch}

Abstract In this paper we propose a cellular automata model (CA) to understand and analyze
how customers adapt their decisions based on local information regarding the behav-
ior of the system and how the interactions of individuals and their decisions influence
the formation of queues, which in turn impacts the sojourn time. We illustrate how
a multichannel system of service facilities with endogenous arrival rate and exoge-
nous service rate, based on local information and locally rational agents, may present
different collective behaviors and in some cases reaches the nash equilibrium.
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1. Introduction
Queuing problems address a broad range of applications which have been widely tackled
and discussed in various disciplines since Erlang [3], who is considered to be the father of
queuing theory (Gross and Harris [5]), first published the telephone traffic problem. Studies
of queuing systems encompass various disciplines including economics, physics, mathematics,
and computer science.
Queuing is a fact of life that we witness daily and consider as an annoying situation.

Banks, roads, post offices, and restaurants, are a few places where we experience queuing on
a day-to-day basis. As the adage says, “time is money,” is perhaps the best way of stating
what queuing problems mean for customers. Queuing becomes an annoying and costly affair
for customers who require a certain service routinely. In these cases, the experience enables
customers to estimate the sojourn time for the next time, before deciding whether or not
to join the queue and/or the best time to join, thus implying a dynamic queuing system
with endogenous arrival rates which depend on the customers’ expectations. For example,
people who annually take their car to the garage for emissions tests, decide based on their
experience what garage to take the car to and at what time to do so. Similarly, a worker
or a student who daily has to select an hour and a restaurant to have lunch, has enough
experience to choose the time and place that he considers less crowded.
The early works concerning queuing problems were confined to equilibrium theory

(Kendall [9]) and focused on the design, running, and performance of facilities, with rela-
tively little emphasis given to the decision processes of the agents of the system, i.e., the
customers and managers of the facilities (van Ackere et al. [22]). Most queuing problems are
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tackled from an aggregated point of view. They are modeled by assuming static conditions,
and exogenous arrival and service rates, and are analyzed in steady-state, despite the fact
that they are dynamic and that the agents’ decisions depend on the state of the system
(Rapoport et al. [16]). More recently, researchers have attempted to shift the focus from
these predominant assumptions of traditional queuing theory to a dynamic context in which
agents’ decisions are increasingly considered (e.g., Haxholdt et al. [7], van Ackere et al. [21]).
The present research is in this new direction.
There has been relatively little research aimed at analyzing and understanding the behav-

ior of agents involved in a queuing system (van Ackere et al. [22]). The seminal papers on
this subject are Naor [12] and Yechiali [24]. Koole and Mandelbaum [10] have suggested the
incorporation of human factors as a challenge in order to advance the development of queu-
ing models for call centers. Most of the models in this field are stochastic (e.g., Naor [12],
Yechiali [24], Dewan and Medelson [2], Rump and Stidham [17], Zohar et al. [25]) and their
form of feedback is either state-dependent (e.g., Naor [12]) or steady state (e.g., Dewan and
Mendelson [2]). The stochastic models are aimed at understanding the impact of variability
of the service and arrival processes on the system behavior (van Ackere et al. [22]). Some
recent models are deterministic. For instance Haxholdt et al. [7], van Ackere and Larsen [20]
and van Ackere et al. [21] analyze the feedback process involved in the customer’s choice
regarding which queue he should join in the next period. Haxholdt et al. [7] and van Ackere
et al. [21] capture the average perceptions of the current customers in order to give feed-
back to the current and potential customers about the state of the system. van Ackere and
Larsen [20] applied a single one-dimensional Cellular Automata (CA) model to capture the
individual expectations of the customer about the congestion on a three road system.
We seek to understand how customers react to changing circumstances of the system.

Our research involves studying the interactions of individuals within the system and the
system’s interactions with the individuals. These interactions are non-linear and involve
feedback, and delays, and they reproduce adaptive and collective behaviors which depend
on the initial values allocated to the customers. These issues make it difficult to solve models
analytically; hence we adopt a simulation approach.
Specifically, we are interested in knowing how customers adapt their decisions based on

local information regarding the behavior of the system. This information consists of their
expectations (perceptions), their experiences, and that of their neighbors. In this way, we
are moving the focus from analyzing the performance or designing the processes of a queuing
system to analyzing the individual behavior of the agents and its impact on the system.
We apply agent-based simulation (North and Macal [15]), more precisely a CA model

(Wolfram [23]), to capture the complexity of a self-organizing system. This complexity is
represented by nonlinear interactions between the system’s agents. “Cellular Automata are,
fundamentally, the simplest mathematical representations of a much broader class of com-
plex systems” (Ilachinski [8]). CA enables to endow agents with enough computational
ability to interact with other agents of the system and share information. This is useful
for modeling problems at any abstraction level (Borshchev and Filippov [1]). Taking into
account the agents’ autonomy, their interaction, and the fact that the information is shared
between individuals at micro level, we consider that CA is a suitable methodology to help
us model the system complexity. A CA model depicts agents interacting in a spatially
and temporally discrete local neighborhood (Ilachinski [8]). The agents are represented as
cells and each cell takes on one of k-different states at time t according to a decision rule
(Ilachinski [8]). This decision rule determines the state of each cell at the next time period
(t+1) based on the cell’s current state and that of its neighbors (North and Macal [15]).
We use exponential smoothing (Gardner [4]) to estimate the agents’ expectations of the

congestion in the queues (in terms of sojourn time). In other words, the agents’ decisions
are based on adaptive expectations (Nerlove [14]). Exponential smoothing is based on a
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weighted average of two sources of evidence: one is the most recent observation and the
other the estimation computed the period before Theil and Wage [19].
Consider a situation where customers routinely require a service and autonomously decide

on a facility in a multichannel system with one queue for each channel (facility). There are
also other applications in which customers do not choose a facility for service, but they may
choose at what time to join the facility. In these cases we can consider each time period
as a service channel. Once a customer is in the facility, if all servers are busy, customers
must wait to be served. Their decision to return in the next period to the same facility, and
therefore their loyalty, will depend on their past experience. Some examples of this kind of
systems include an individual who must choose a garage for the inspection of his car, an
individual who goes monthly to a bank to pay his bills, and an individual who goes to the
supermarket weekly. In all these examples, the customer may choose the facility he wishes
to be served at and at what time to do so. These are, in general terms, the kind of queuing
problems to be studied in this research.
Simulating the CA model we found that it presents interesting collective behaviors of

agents (customers) endowed with memory and local interactions with neighbors. In this
paper we explain three of these behaviors: The first behavior depicts customers who switch
between the different alternatives and do not achieve stability. The second behavior repre-
sents customers who alternate between two facilities, but the system achieves stability. In
this case customers and their best performing neighbor alternate facility. The last behavior
corresponds to a Nash equilibrium wherein after trying out several facilities, each agent
remains loyal to one facility.
The paper is organized as follows. After this brief introduction, we provide a model

description, which is followed by the simulation setup and results. We conclude the paper
with comments and suggestions for future work.

2. The Model
Consider a group of customers (referred to as agents) who routinely must choose which
service facility to use in a multichannel system with one queue for each channel (facility).
We assume an exogenous and identical service rate (µ) for all facilities, whereas the arrival
rate (λ) is endogenous and depends on the agents’ choice. They make their choice based
on the sojourn time which they expect to face the next period at the different facilities.
These expectations are built using the agents’ most recent experience and that of their
nearest neighbors. We apply a cellular automata model (CA) (Gutowitz [6], Wolfram [23])
to represent the interaction between agents and capture their expectations and dynamics.
Agents are located in a one-dimensional neighborhood where each agent has exactly two
neighbors, one on each side. The neighborhood represents, for instance, a social network
encompassing colleagues, friends, people living next-door, etc.
The structure of the model is assumed in the shape of a ring composed of cells. Each cell

is an agent who may choose a service facility each time period. That is, the facilities are
the states which each cell may take at each time period. Agents update their state through
local interaction using a decision rule which is based on their own experience and that of
their neighbors. In turn this experience depends on the state of all agents. We assume agents
have a memory and the ability to update it using new information (previous experience).
This memory contains the agents’ expected sojourn time for the next period at the different
facilities. We use adaptive expectations (Nerlove [14]) (also known as exponential forecasting
Theil and Wage [19] or exponential smoothing Gardner [4]) to model the updating process
of agents’ expectations. Such a CA model may be described as follows:
Let A be a set of n agents (cells) {A1,A2, . . . ,Ai, . . . ,An} interacting with their neighbors

and Q the set of m facilities (states) {Q1,Q2, . . . ,Qj , . . . ,Qm} which agents (cells) may
choose (take) at each time t. Agents interact in a neighborhood of size K (Lomi et al. [11]),



Delgado et al.: Collective Behavioral Patterns in a Multichannel Service Facilities System
12th INFORMS Computing Society Conference, c© 2011 INFORMS 19

which defines the number of neighbors on each side. For example, if K = 1, agent Ai will
interact with agents Ai−1 and Ai+1. Agent An will interact with An−1 and A1.
Allm facilities have the same service rate µ, but different arrival rates (λj). Each agent Ai

may join only one facility Qj at each time t. We denote the state of agent Ai at time t by
si(t). Let S denote the set of states si(t) of n agents at time t. This state si(t) is one of the
m possible facilities, that is, S ⊂ {Q1,Q2, . . . ,Qj , . . . ,Qm}. Then the arrival rate (λjt) for
the queue j at time t is a function of S, Q, and t. Let us consider the following function:

xij(t) = f(si,Qj , t) =
{
1 if si(t) =Qj ,
0 otherwise. (1)

The arrival rate (λjt) for the queue j at time t, will be given by:

λjt =
n∑

i=1

xij(t). (2)

The state si(t) for each agent Ai evolves over time according to the agents’ expected
sojourn time for each facility Qj , denoted by Mijt . At the end of each time period, the
expected sojourn time of the agent for each facility is updated using two sources of informa-
tion: his most recent experience and that of his neighbors Ai−1 and Ai+1 (Sankaranarayanan
et al. [18]). Agent Ai’s experience at facility Qj at time t is denoted by Wijt . Then, agent
Ai’s state (si(t+1)) and his expectation (Mijt+1) for queue j for the next time period t+1
are determined as follows:

si(t+1) = F (Mijt+1), (3)

Mijt+1 =G(Wi−K,jt, . . . ,Wijt , . . . ,Wi+K,jt,Mijt), (4)

where Wi−K,jt and Wi+K,jt denote, respectively, the experience of neighbors Ai−k and
Ai+k. The function G defines agent Ai’s memory Mijt+1 (expectation) for queue Qj for time
t+1, using an adaptive expectations equation (Nerlove [14]), given by:

Mij, t+1 = θMijt +(1− θ)Wijt , θ ∈ (α,β), (5)

where θ denotes the coefficient of expectations (Nerlove [14]). The parameter θ may take
two different values depending on the source of information: When agents update their
memory using their own experience, θ takes the value α. Otherwise, θ takes the value β. For
θ = 0, no weight is given to the past, which implies that the expected sojourn time equals
the most recently experienced time. A value θ = 1 implies no updating of expectations,
i.e., the expectation will never change whatever the agent’s new information. Thus, the
higher the value of θ, the more conservative (or inert) the agent is towards new information,
while a lower value means agents consider their recent information to be more relevant. The
expected sojourn time for period t+1 (Mijt+1) is thus an exponentially weighted average of
the most recent experience Wijt and the previous computed expectation (Mijt). Agent Ai

updates his memory in the following way:
(i) Based on his own experience (Wijt), he will update his estimate of the sojourn time

for his previously chosen service facility using θ= α.
(ii) The second source of information comes from the experience of the agent’s neighbors

{Wi−K,jt, . . . ,Wi−1, jt,Wi+1, jt, . . . ,Wi+K,jt}. He will update his memory for the previously
service facility chosen by his best performing neighbor, i.e., the neighbor who has experienced
the minimum sojourn time at the previous time period W , using θ= β.
In the special case where the facility chosen by the agent and that chosen by his best per-

forming neighbor coincide, the agent only updates his expectation once, using the minimum
of α and β as weight. Regarding the decision rule, we consider rational agents who join the
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facility with the lowest expected sojourn time, that is, the agents update their state si(t)
each time period t using the minimum Mijt according to Equations (3) and (5). In special
cases where an agent has the same expected sojourn time for two or more facilities and it is
the lowest, he chooses as follows: if the expected time for the facility, which he chose, equals
the minimum Mijt he chooses this facility. If not, he checks whether the facility used by his
fastest neighbor equals the minimum. If yes, he chooses this facility. Otherwise he chooses
a facility at random: the facilities tied for the minimum expectation have equal probability
of being selected.
Finally, we need to define the sojourn time Wjt at facility Qj , given that λjt agents

selected this facility at time t. Unfortunately, the steady state equations are only valid for
queuing systems that reach equilibrium, and in which the average service rate exceeds the
average arrival rate.
We need a congestion measure which can be used for our transient analysis where at peak

times agents cluster in the same facility and the arrival rate temporarily exceeds the service
rate. Considering the above, we use a congestion measure proposed by (Sankaranarayanan
et al. [18]) for a multichannel service facility with the same service rate (µ) for all facilities
and endogenous arrival rate (λjt). Such a measure is given by:

Wjt =
λjt

µ2 +
1
µ

. (6)

Then, by Little’s Law and the definition of ρ (ρ= λjt/µ), the expected number of people
for facility Qj at time t is given by:

Ljt = ρjt(ρjt+1) = ρ2
jt+ ρjt. (7)

These measures satisfy the behavioral characteristics involved in the well known Little’s
Law and the steady state equations (Gross and Harris [5]), but remain well-defined when
ρ ≥ 1. For more details about the formulation of these measures, see (Sankaranarayanan
et al. [18]). A brief description of the formulation and validation of Equations (6) and (7) is
given in the appendix.

3. Simulation Setup
The agents of a CA model are endowed with memory (North and Macal [15]). This feature
enables us to use this framework to investigate the problem we address here. We model the
agents’ memory using adaptive expectations as described above. As the system behavior
depends on the initial values of memory assigned to the agents, i.e., the evolution of the
system is path dependent, our model cannot be solved analytically. Hence we use simulation
to understand the system behavior. For its implementation we use Matlab, a numerical
computing environment used in engineering and science.
The CA model is configured with 120 agents (i.e., the number of cells n in the one

dimensional discrete lattice) and 3 facilities (i.e., number of states m which each cell may
take). In this paper we use a neighborhood size (K) equal to 1, due to limited computational
capacities. The service rate is the same for all facilities and equals 5 agents per unit of time.
We simulate the model for 50 periods. These parameters are appropriate to observe the
phenomena with which we are concerned. Each agent is allocated an initial memory for the
expected sojourn time for each facility. These memories are distributed randomly around
the optimal average sojourn time. In this paper we limit our study to the case where the
agents use the same behavioral parameters value i.e., α= β = 0.5. All parameters used in
this simulation are summarized in Table 1.
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Table 1. Parameter values used for the simulation runs.

Parameter Description Value

m Number of service facilities 3
n Population size (number of agents) 120
µ Service rate 5
α= β Weight to memory w.r.t. own experience and 0.5

neighbors’ experience, respectively
Tsim Simulation time 50
K Neighborhood size 1

4. Results
The four panels in Figures 1 to 3 illustrate different collective behaviors which may be
captured by the CA model. We ran the simulation model using the same configuration for
all runs, as shown in Table 1, but using different initial values of the expect sojourn times
allocated to each agent. Recall that these values are assigned to each agent randomly.
We start by analyzing the more disaggregated results before studying the system globally.

Figure 1 captures the evolution of the agents’ choices of service facility over 50 time periods
(one iteration) for 4 different initial values of expected sojourn times allocated to the agents.
The horizontal axis represents time and the vertical axis the 120 agents. The colors indicate
the state (chosen facility) of a particular agent at a particular time (black = facility 1,
gray = facility 2, and white = facility 3).

Figure 1. Spatial-temporal behavioral evolution of agents’ choice of service facility with α = 0.5
and β = 0.5 with different values for the initial expected sojourn times.
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Figure 2. Four examples of average sojourn time for parameters α= 0.5 and β = 0.5 with different
values for the initial expected sojourn time.
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We can observe that there is always an initial warm-up period whose length can vary.
During this period, the agents try out the different facilities and all facilities are tested. We
may say that agents are exploring the different facilities in order to learn from the system. For
example in Figure 1(b), agent 1 experienced the three facilities for the first five time periods
with a sequence of 32,231. This phenomenon depends strongly on the randomly allocated
initial expected sojourn times. We can see that in many of these cases, some facilities are
very crowded, implying that agents experience a large sojourn time at these facilities and
expect the same situation for the next time period (e.g., Figures 1(c) and 1(d) show that
facility 3 (white) is crowded at time 4). Consequently they move to another facility at the
next period, generating the same problem for the new facility and in some cases forgetting
the previous facility (e.g., in Figures 1(c) and 1(d), no agents choose facility 3 at time 5,
implying that one or both of the other facilities are crowded).
After the warm-up period, a set of more stable choices emerges over the next few periods.

We can observe that agents present three different collective behaviors. The first is when
there are still some agents moving through all facilities, as shown in Figure 1(a). Figures 1(b)
and 1(d) present the second case, in which a few agents keep switching between two facilities
(e.g., in Figure 1(d) agents 98 and 102 switch between facilities 1 (black) and 3 (white)
in a fairly regular pattern), while the others remain at the same facility. The logic behind
this alternating behavior is that after the warm-up period, the sojourn times expected by
a few agents at two facilities are very similar. As in this particular case agents give the
same weight both to their own information and that of their neighbors, after updating their
memories they consider that the facility which their neighbor used is more attractive than



Delgado et al.: Collective Behavioral Patterns in a Multichannel Service Facilities System
12th INFORMS Computing Society Conference, c© 2011 INFORMS 23

the one they patronize. They thus move to the neighbor’s facility. A few agents moving to
a facility during an almost stable period make it less attractive. Consequently, they decide
to come back to their previous facility the next period, resulting in this switching behavior.
Figure 1(d) also illustrates another phenomenon where one service facility is forgotten

after the initial transition period. This particular case may occur when agents have had one
or more very bad experiences at a facility. Its expected sojourn time becomes so large that
none of the agents will patronize this facility for the next periods and they will thus be
unable to update their expectation; hence the agents will never again use this facility in the
future.
The final observed collective behavior is shown in Figure 1(c): it portrays an equilibrium

situation, which corresponds to the case where the agents are equally distributed across the
three facilities (i.e., 40 agents at each facility), and all agents choose to remain at the same
facility. They will stay at the same facility because once the system reaches steady-state
they are in the facility which minimizes their expectation of sojourn time (i.e., maximization
of their pay-off Nash [13]) given the other agents’ choices. That is, they reach the Nash
equilibrium: each player’s decision is optimal against that of the others (Nash [13]). Given
that the three facilities are identical, an equal split of the agents across the three facilities is
the only Nash equilibrium which the system can achieve. This situation coincides with the
social optimum and yields a sojourn time of 1.8 time units. However, there are many ways
in which agents can achieve this collective behavior (40 agents remaining at each facility
over time). Which one materializes depends on the initial conditions. All facilities have the
same sojourn time and the agents’ estimates will converge to reality. Thus no agent wants
to switch facility and this behavior will remain stable over time.

Figure 3. Distribution of agents across the three service facilities for parameters α = 0.5 and
β = 0.5 depending on the initial expected sojourn time.
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Figure 2 shows the evolution of the average sojourn time, along with the minimum and
maximum sojourn times experienced by the agents for each time period. This figure provides
us with a more aggregated view of the system’s behavior. The major fluctuations occur
during the warm-up period. For the four cases shown in Figure 2, the average sojourn time
after the warm-up transition period are respectively 1.839, 1.802, 1.800, and 2.644. The first
two are close to the Nash equilibrium (1.8), the third one confirms the equilibrium condition
of the system and the latter is significantly higher than the Nash equilibrium. During the
transition period, the average sojourn time of the system and the maximum sojourn time
experienced by an agent are respectively 100% and 200% higher than the average sojourn
time in steady state while the minimum sojourn time experienced by any agent is less than
50% of the average sojourn time in steady state.
The average sojourn time stabilizes after the transition phase. Note that once the system

has stabilized, the average sojourn time of the system may oscillate as in Figures 2(a)
and 2(d). The same fluctuating pattern occurs with the maximum and minimum sojourn
times in Figures 2(a), 2(b), and 2(d). In general terms this fluctuating behavior occurs
because a few agents keep changing facility, often alternating between two facilities, as
illustrated in Figures 1(a), 1(b), and 1(d). This behavior is not seen in Figure 2(c) because
the system has reached the Nash equilibrium. While Figures 2(b) and 2(d) present a well-
defined oscillating pattern, the oscillations in Figure 1(a) are irregular. This is because the
expectations of some agents for the three queues are very similar; they thus keep facility, as
shown in Figure 1(a) (e.g., agent 26 between times 36 and 38).
Even though some agents in Figure 1(b) are switching between 2 facilities, the average

sojourn time in steady state remains constant. This occurs because in one of the facilities (in
this case facility 1) the number of agents stays constant and equals n/m, i.e., the number of
agents in a facility when the Nash equilibrium is reached (40 for this case), while the other
n−n/m agents are divided among the other two facilities, with (n/m)+v agents patronizing
one facility, and the remaining (n/m) − v the other one, where v is any integer number
between 1 and n/m. For example in case (b) the number of agents in facility 2 alternates
between 39 and 41 each time period. When 39 agents join facility 2, 41 join facility 3, and
vice versa. In this case v equals 1.
In Figure 2(d) there are just 2 facilities in use, facilities 1 and 3 (see Figures 1(d) and 3(d)).

After the transition period the number of agents in each facility alternates each time period
between nj + v and nj − v agents, nj being the average number of agents who patronize
facility j (i.e., j equals 1 and 3). When 66 agents join facility 1, the other 54 join facility 3,
while when 48 agents go to facility 1, the other 72 join facility 3. Unlike Figure 2(b), the
average sojourn time in Figure 2(d) fluctuates because n1 �= n2, i.e., the average number of
agents (nj) differs across facilities.
Figure 3 shows how agents are distributed across the different facilities over time. In these

figures we analyze the system behavior at a macrolevel. For instance, we easily can see when
one facility is forgotten or which facilities are more crowded at a given moment of time, e.g.,
Figure 3(c) illustrates that facility 1 is forgotten at time 4, while at time 7 this is the only
facility used by agents.
While Figure 2(a) indicates an almost stable average sojourn time, both Figures 1(a)

and 3(a) confirm that there is no such stability at the microlevel. In Figure 1(a) we saw how
some agents switch between facilities. In Figure 3(a) we see that the distribution of agents
in the three queues is changing over time in an irregular fashion.
Finally we can observe in Figure 3(c) that after the transition period the distribution

of agents across the three queues does not change over time. This confirms that the Nash
equilibrium may be reached with the parameter configuration used for this simulation, i.e.,
when agents give the same weight to both the memory and the new information (own
experience and that of best performing neighbor).
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5. Conclusions and Future Work
We have presented a one-dimensional cellular automata based queuing model to explain and
understand how customers interact and make decisions in a multichannel service facility. We
deviate from the traditional research approach to queuing which has mainly concentrated on
the design, performance, and running of service facilities, assuming that customers’ arrivals
are exogenous and follow a stochastic process. We describe a self organizing disaggregated
queuing system with local interaction and locally rational agents (customers) who, based
on their expectations (memory), decide which facility to join the next time period. They
update their expectations based on two sources of information, their previous experience
and that of their neighbors, using an adaptive expectation model.
Simulating this queuing model showed interesting collective behavior of agents (customers)

endowed with memory and local interactions with neighbors. In this paper we have explained
three of these. The first behavior depicts the case where customers do not find a facility
that satisfies their requirements and continue to switch between alternatives. The second
behavior represents the case where some customers have two preferred facilities and one of
them corresponds to the one of their preferred neighbor (who has the better performance).
In this case the customers alternate between 2 facilities. The last behavior corresponds
to a Nash equilibrium wherein after trying out several facilities all agents find the most
convenient one.
While the aggregated results (e.g., the evolution of average sojourn time) show that there

is a certain stability in the system, the more disaggregated results (the agents’ evolution in
the system) may either contradict or confirm this analysis. By looking at the individual level
we understand better how customers learn from the system and update their expectations
regarding the system using the new information and their previously computed expectations
(the memory). It also enables us to study how the customers’ expectations may influence
the stability of the system.
This is clearly a starting point for such a research agenda and we are working on extending

the above mentioned framework. Extensions include playing around with different behav-
ioral parameter values, considering service facilities of different sizes, including uncertainty
in the customers’ expectations, and also increasing the complexity of local interactions
among agents i.e., changing the neighborhood parameter K. Another aspect would be to
incorporate more decision capabilities into the model, such as decision making by services
providers, i.e., considering that both the arrival and service rate are determined endoge-
nously. An interesting approach would be to conduct experiments wherein human subjects
act as customers so that we can verify the model and the heuristics that are used.
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Appendix. Equation of the Sojourn Time (Wjt) (Adapted from
Sankaranarayanan et al. [18])
Let us consider an M/M/1 system (i.e., a one-server system with Poisson arrivals and

exponential service times, see e.g., Gross and Harris [5]) in steady state. For such a system,
the expected number of people in the system (L) satisfies Equation (8):

L=
ρ

1− ρ
=

λ

µ−λ
, (8)

where ρ denotes the utilization rate λ/µ. Recalling Little’s Law

L= λ ∗ W, (9)
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Equations (8) and (9) imply that the average sojourn time in the system (W ) equals

W =
1

µ−λ
. (10)

Unfortunately, these equations are only valid in steady state, which requires ρ < 1. We
need a congestion measure which can be used for a transient analysis where at peak times
the arrival rate temporarily exceeds the service rate. We have therefore attempted to identify
a congestion measure that satisfies the behavioral characteristics of Equations (8) to (10),
but remains well-defined when ρ ≥ 1. Such a measure should satisfy the following criteria:

(i) if ρ equals zero, the number of people in the facility, L, equals zero (Equation (8));
(ii) L increases more than proportionally in ρ (Equation (8));
(iii) when the arrival rate tends to zero, the sojourn time W is inversely proportional to

the service rate µ (Equation (10));
(iv) when the arrival rate and service rate increase proportionally, leaving ρ unchanged,

the waiting time W decreases (Equations (8) and (9)); and
(v) Little’s Law is satisfied (Equation (9)).

With these requirements in mind, we define Ljt as follows:

Ljt = ρjt(ρjt+1) = ρ2
jt+ ρjt. (11)

Using Little’s Law and the definition of ρ yields the average sojourn time

Wjt =
λjt

µ2 +
1
µ

. (12)
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