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Abstract This paper (a) describes a defender-attacker-defender sequential game model (DAD)
to plan defenses for an infrastructure system that will enhance that system’s resilience
against attacks by an intelligent adversary, (b) describes a realistic formulation of
DAD for defending a transportation network, (c) develops a decomposition algorithm
for solving this instance of DAD and others, and (d) demonstrates the solution of
a small transportation-network example. A DAD model generally evaluates system
operation through the solution of an optimization model, and the decomposition algo-
rithm developed here requires only that this system-operation model be continuous
and convex. For example, our transportation-network example incorporates a conges-
tion model with a (convex) nonlinear objective function and linear constraints.
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1. Introduction
Because of recent terrorist attacks that have destroyed public and private infrastructure
(e.g., the World Trade Center attacks in New York in 2001, the train bombings in Madrid in
2004, the public-transport bombings in London in 2005), and because of continuing threats,
the United States and other countries have directed substantial efforts toward (a) assess-
ing threats to critical infrastructure from attacks by an intelligent adversary, (b) develop-
ing defenses that help prevent attacks, and (c) developing defenses that enhance system
resilience, that is, defenses that mitigate the damage caused by successful attacks. This
paper concerns itself with items (a) and (c).
As defined by the U.S. Government [71], critical infrastructure consists of “systems and

assets, whether physical or virtual, so vital to the United States that the incapacity or
destruction of such systems and assets would have a debilitating impact on security, the
national economy, national public health or safety, or any combination of those matters.”
The U.S. National Strategy for Homeland Security states the infrastructure mission unam-
biguously: “We must now focus on the resilience of the system as a whole—an approach that
centers on investments that make the system better able to absorb the impact of an event
without losing the capacity to function” (Homeland Security Council [43, p. 28]). Using lim-
ited investment resources to support this mission challenges infrastructure decision-makers
at all levels of government, industry, and the military. This paper shows how to model and
solve such investment problems.
One technique advocated for analyzing infrastructure defenses against a deliberate adver-

sary builds on a long tradition of risk assessment for nondeliberate threats such as natural
disasters, technological failures, and accidents: “probabilistic risk assessment” (“PRA,” also
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called “probabilistic risk analysis”) is a conglomeration of techniques that many organiza-
tions, including the U.S. Department of Homeland Security (DHS), are using in an attempt
to improve the resilience of infrastructure to attack. (See Garrick et al. [36], Parnell et al.
[58], Ezell et al. [30] for general discussions of PRA; see DHS [29] regarding PRA’s applica-
tion at DHS.) In the simplest case, risk assessment amounts to scoring the risk associated
with individual attack scenarios by defining Risk = Threat ×Vulnerability ×Consequence;
more complicated cases apply more complicated functions that are represented generically
as Risk = f(Threat ,Vulnerability ,Consequence). Roughly speaking, Threat is the probabil-
ity of a particular attack, Vulnerability is the probability that such an attack would be
successful, and Consequence measures the damage incurred by a successful attack, in terms
of lives lost, economic damage, etc. Subject-matter experts must be involved in assessing all
of these quantities (see Willis [76], ASME [5]). Once evaluated, risk scores become the basis
for prioritized investment that aims to reduce those scores (Paté-Cornell and Guikema [59],
Bier [8], Willis [76], Bier et al. [9]).
PRA models require that event probabilities be defined as static inputs. For a “terrorism

risk analysis” of some infrastructure system, for instance, one input might be the probability
that component X of a system will be attacked, and another might be the conditional
probability that componentX will be damaged to a specified degree if it is attacked. (Results
of attacks are stated in terms of expected consequences, e.g., expected economic losses.)
Growing evidence indicates, however, what game theorists know intuitively: static proba-

bilities are inappropriate for modeling the behavior of an intelligent adversary (Cox [25, 26],
Golany et al. [39], Brown and Cox [11, 12]). Indeed, two National Research Council studies
harshly criticize DHS’s use of PRA, especially in the context of terrorism (NRC [56, 57]).
Further, even if PRA could measure Risk correctly through static inputs, PRA offers no
general, computationally viable method for allocating limited resources to minimize risk. In
particular, the standard method of “spending down the prioritized list” until a budget limit
is reached is unlikely to be optimal. The only way to overcome the difficulty of minimizing
risk within the PRA framework would be to develop an efficient method to compute, at least
implicitly, the risk to each possible set of vulnerable components. But no such method
currently exists. In several ways, then, PRA is the wrong tool for planning infrastructure
defenses against an intelligent adversary.
Game theory, in contrast to PRA, models the actions of interacting “players” and therefore

offers a more appropriate framework for modeling (a) a society that wants to protect its
infrastructure from attack by building defenses, (b) an adversary who is likely to see those
defenses and to attack in a maximally harmful way, and (c) a society that will observe the
results of any attacks and operate to the best of its reduced ability. We propose such a model
here, with the goal of maximizing resilience of infrastructure, i.e., minimizing disruption,
against worst-case attacks. Disruption is evaluated quantitatively.
The rest of this paper is outlined as follows. Section 2 describes the paradigm of a sequen-

tial (Stackelberg) game for planning infrastructure defense, namely, a “defender-attacker-
defender model” (DAD); we survey the literature here, also. Apparently, the literature
reports computational results for only one instance of DAD for a realistically modeled
infrastructure system, namely, an electric power transmission grid (Salmerón et al. [65]).
That paper does not fully explain its solution methods, however. Therefore, §3 describes a
realistic DAD model for planning defense of municipal road infrastructure, and §4 devel-
ops a simple, general algorithm for solving it. Section 5 presents computational results and
analysis of a small example; that section, together with the appendix, specifies all problem
data. To the best of our knowledge, this work describes the first use of a nonlinear system-
operation model within the DAD framework. Section 6 presents conclusions and suggests
directions for future work.
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2. The DAD Model
A number of researchers have proposed the use of optimization-based models to represent a
“defender’s” and an “attacker’s” sequential decisions for the purpose of defending infrastruc-
ture (Brown et al. [16]; Morton et al. [55]; Scaparra and Church [66]; Salmerón et al. [65, ?]).
Brown et al. [16] formulate a model of defense, attack, and operation of an infrastructure sys-
tem using a three-stage, sequential game, called a defender-attacker-defender model (DAD).
This model, which is a type of Stackelberg game (see von Stackelberg [73]), commonly takes
this form:

DAD : min
w∈W

max
x∈X(w)

min
y∈Y (w,x)

f(y).

In the first stage of this model, the “defender” chooses infrastructure investments w ∈W ;
in the second stage, the “attacker” sees those investments and attacks using attack plan
x∈X(w); in the third stage, the defender, as “operator” of the system, sees attacks x and
infrastructure investments w, and operates the system by choosing activities y ∈ Y (w,x)
that minimize operating cost measured through f(y). More details follow.

2.1. The Operator D
The innermost minimization of f(y) represents the actions of the defender-as-operator, or
simply operator, who chooses a set of activities y ∈ Y (w,x) to minimize the cost of operating
the system. (The defender and operator may not be the same entity, but they share the same
goals.) The notation Y (w,x) indicates that activities may be affected by both defensive
investments w and attacks x.
Cost for the operator should be construed broadly, and can cover dollar cost, lives lost,

delay of travelers, and so on. Of course, “negative output” or “negative throughput” can be
used here if the operator’s goal is actually to maximize output, throughput or some similar
measure. The model can also be generalized, typically for solution purposes, to include an
objective function of the form f(w,x,y). More important is the fact that the system need
not have an actual operator. For instance, as demonstrated in this paper,D can represent the
solution of an equilibrium model of a cost- or delay-minimizing population of travelers. The
keys here are that (a) a validated model represents optimal system operation, and (b) the
model can be manipulated easily to reflect parameters and/or constraints that change as
a function of attacks that damage or destroy components, and as a function of defensive
actions that protect existing system components, add capacity to such components, or even
construct new ones.
Numerous authors propose the use of abstract, surrogate models for system operation

(or for evaluating the effects of attacks), and never validate their models’ predictions
using “prevalidated,” industry-standard models. For instance, Albert et al. [2], Chassin and
Posse [18], Lewis [49, pp. 263–284], and Wang and Rong [74] make claims about the vulner-
ability of an electric power grid to attack using surrogate models that essentially ignore the
physics of alternating current. Also, a number of authors make claims about the resilience
of the Internet to attack or random disruptions (e.g., Albert et al. [3], Cohen et al. [21]), but
none attempt to validate their work using an industry-standard network-simulation pack-
age (e.g., Lucio et al. [51]), or attempt to validate with experiments on real networks (e.g.,
Zaragoza and Belo [81]). These surrogate models might be useful, but we do not know.
For real infrastructure systems, operator models often exist that represent “best prac-

tices” within a particular engineering or industrial domain. When available, these models
ought to be adapted and used. For example, when considering the value of components in
electric power infrastructure, one ought to use an industry-standard model of power flow
and supply (Salmerón et al. [64, 65]); when considering components of a water-distribution
system, one ought to use a standard hydraulic model (Collins et al. [22]; Bhave and Gupta
[7, pp. 115–151]); and when considering the value of components of road network, one
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ought to use standard traffic-flow model (Beckmann [6], Gazis [37, pp. 185–236], Boyce and
Bar-Gera [10]). If such an approach is used, then validation is essentially automatic, since
the relevant industry has already performed the required validation. (Models involving mul-
tiple infrastructures or simulation certainly warrant investigation, but exceed the scope of
this paper.)

2.2. The Attacker A
The maximization in DAD represents the actions of an attacker who observes defensive
preparations and then chooses an attack plan x, for example, x� = 1 if component � of the
system is attacked, and x� = 0, otherwise. Defenses will influence attacks and/or their effects;
hence x ∈X(w). The attacker seeks to maximize damage to the operator by maximizing
the operator’s cost of operating the system.
We denote the model that results from fixingw inDAD asAD(w), or generically asAD:

this is an attacker-defender model. Danskin [28] describes min-max models that resemble
AD except that he uses only continuous variables; Moore and Bard [54] describe a more
general framework that does allow for integer variables and which includes AD as a special
case. Unlike AD, Moore and Bard’s model does not require that each player’s objective be
diametrically opposed. This generalization does not seem useful in our context, however,
as its use would force us to infer the attacker’s “true” objective, probably through the
impossible-to-validate beliefs of subject-matter experts.
There is a long history in the development of interdiction models to assess the vulnerability

of a system, typically a network, to attack. As documented by Schrijver [67], the famous
max-flow/min-cut theorem has its origins in a 1955 study of how to interdict the Russian
railroad network that, in the event of a war with the West, would have carried materiel
from various staging points into eastern Europe (Harris and Ross [42]). That model may
be viewed as a specialized instance of AD with a binary model of system operation: the
system enables positive flow, or it does not. The models described below are more general,
and each may be viewed as a full-fledged instance of AD.
Fulkerson and Harding [34], Golden [40], and Israeli and Wood [45] formulate and solve

network-interdiction problems that maximize the shortest-path length between two desig-
nated nodes in the subject network. The first two papers model continuous reductions in
capacity with “interdiction effort,” while the last models binary interdictions. Wood [78]
minimizes the maximum flow in a capacitated network through interdiction (see also
Wollmer [77], Ratliff et al. [62], Phillips [61]); Cormican et al. [23] model and solve a
stochastic version of Wood’s problem that minimizes the expected maximum flow through
a capacitated network given uncertain arc capacities and/or uncertain attack successes.
Lim and Smith [50] present and solve a multicommodity-flow network-interdiction problem.
Smith [68] and Wood [79] present overviews of interdiction models. Although Cormican et al.
do not use the following terminology, they show how a model formulated with “capacity
interdiction” can be reformulated usefully as a model with “cost interdiction,” that is, as
a model in which interdiction increases the cost of an activity. This reformulation is often
important for efficient solution of AD.
Early work on network-interdiction models of the form AD was not construed as iden-

tifying vulnerabilities in critical infrastructure. Much new work on AD models has that
explicit purpose, however; for example, see Salmerón et al. [64] and Brown et al. [15, 14].
Such AD models have also served as the basis for over 150 “red-team exercises” performed
by students at the Naval Postgraduate School. Brown et al. [16] document some insights on
the vulnerability of infrastructure from those exercises.

2.3. The Defender D
The outermost minimization in DAD, i.e., “D,” represents the actions of a defender who
takes the first step in this game model by choosing a defensive investment plan, or simply
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defense plan, w ∈W . This plan may include mounting active defenses, hardening infras-
tructure against attack, building new infrastructure that is less vulnerable to attack, or
adding redundancy. The constraints reflected by W normally include one or more impor-
tant resource constraints, so by controlling w ∈W , the defender seeks to allocate limited
resources that make his infrastructure system as resilient as possible to attack.
When defense plans correspond to resource-constrained component hardening, the solu-

tion to DAD identifies which system components should be protected to minimize the
worst-case disruption to operation. In the context of facility location, Church et al. [20]
introduce the r-interdiction median problem, a variation of the classical p-median loca-
tion problem in which individual facilities are unprotected and subject to attack: such a
model might help to identify the most important facilities in a supply system. Church and
Scaparra [19] and Scaparra and Church [66] extend this work to allocate defensive (“forti-
fication”) resources in order to minimize the impact of interdiction. The p-median problem
is, however, only a surrogate for the operation of a real distribution system. One would
hope that real investment in the protection of warehouses or other parts of a supply chain
would follow from a realistic, validated model of supply, production and distribution (e.g.,
Geoffrion and Graves [38], Arntzen et al. [4], Brown et al. [17]).
Brown et al. [16] pose, but do not solve, instances of DAD in the context of several

infrastructure-defense problems. Salmerón et al. [65] develop a “global Benders decompo-
sition algorithm” to solve such models, and apply that algorithm to identifying optimal
defensive investments in electric power systems. They solve some large, realistic problems,
but their description lacks details and does not cover new construction or capacity expansion
as our paper does.
When defense plans w ∈ W correspond to capacity expansion or the construction of

new infrastructure, DAD represents a special type of system-design problem. An extensive
literature exists on the design of “survivable networks,” where the objective is often posed
as a generalization of the k-node or k-edge connected network problem; see Kerivin and
Mahjoub [46] and Grötschel et al. [41] for surveys. Much of this literature uses abstract
models as surrogates for real system operation, for example, requiring at least two node-
disjoint (or edge-disjoint) paths between all node pairs in a telecommunications network
(e.g., Fortz and Labbé [33]). Other network-design papers in telecommunications use simple,
flow-based operator models (e.g., Mateus and Patrocinio [53]); these are close in spirit to
the operator models we propose for use in DAD.

Smith et al. [69] formulate and solve a DAD-type model for designing a multicommodity
flow network that is robust to optimal attacks. (They also consider models with heuristically
planned attacks.) Their network-design constructs resemble ours, and could represent hard-
ening of existing construction as well as new construction. And, similar to our work, they
develop a decomposition algorithm for finding an optimal design, i.e., an optimal defense
plan. Their algorithm has one key limitation, however: it depends heavily on (a) attacks
being represented by bounded, continuous variables (which reduce flow capacity), and on
(b) total attack effort being limited by a single knapsack constraint. Even with this limi-
tation, generation of a single constraint (“cut”) for their algorithm’s master problem may
require solution of |A| mixed-integer subproblems, where A denotes the set of network arcs.
Our methods do not inherently restrict the types of constraints that can be placed on the
attacker, except that attacks are presumed to be binary. We also note that our methods
work with convex, nonlinear operator models as well as more standard linear programs. The
work by Smith et al. might be difficult to extend to the nonlinear case because of its explicit
use of dual extreme points from the linear program.

2.4. Deliberate Actions vs. Random Events
In the form described in here, DAD models deliberate actions, not random events like
natural disasters or accidents. Cormican et al. [23] and Morton et al. [55] extend deterministic
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AD models to incorporate random events, however, and DAD will extend similarly. For
instance, no conceptual barrier exists to modeling the random lifetime of an “emergency
spare” that is used to replace a system component damaged by a deliberate attack.

3. DAD for Defending a Municipal Transportation Network
To illustrate theDAD approach, this section describes an application to protecting a specific
infrastructure system. We consider the challenge of officials in a city government who must
(a) assess the resilience of their city’s transportation network of roads and bridges to terrorist
attacks, and (b) identify cost-effective means to improve that resilience by defending key
links or adding redundant infrastructure. The key links in the network are bridges because
of the need to connect several islands and, unlike road segments, bridges could take many
years to replace. Thus, only bridges are vulnerable to attack in this example.
The operator’s model in this case is a convex, nonlinear program that evaluates total

(or, equivalently, average) travel time for a population of travelers traversing a network.
The nonlinear program implements the Wardrop traffic-equilibrium model (Wardrop [75],
Beckmann [6]), which is employed commonly by traffic engineers (e.g., Gazis [37], Boyce and
Bar-Gera [10]). Indeed, commercial traffic-analysis software provides traffic engineers with
solutions of this equilibrium model (Correa and Stier-Moses [24]).
In the example model presented here, the cost of system operation is measured in terms

of total user travel time for a single period like “the morning commute.” A more detailed
model might integrate cost over time until the system’s damaged components are repaired
or replaced and the system returns to normal. In effect then, our example assumes that
(a) any component that is attacked will be repaired in the same amount of time, (b) any
period of peak traffic is like any other, and (c) nonpeak traffic is of no interest. We present
a complete model next, but warn the reader that some explanations are left to §4 where an
algorithmic framework simplifies those explanations.

Indices and index sets

i, j, p∈N nodes in a transportation network (intersections, or city areas treated as a single
locations in a transportation network); p denotes a population origin for trips;

(i, j)∈E undirected edges (“links”), i.e., bridges and road segments; i < j is assumed;
EB ⊂E bridges;
(i, j)∈A directed arcs (edges with direction of travel included, which may be viewed as

traffic lanes); (i, j)∈E⇔ (i, j)∈A∧ (j, i)∈A; and
d∈D defense options; d ∈Dij ⊆D denotes options available for edge (i, j) ∈ E; d0 ∈

Dij ⊆ D is a “no-defense” option that leaves edge (i, j) ∈ E unchanged (i.e.,
undefended).

Data [units, if applicable]

bpi for p 	= i, −bpi is the number of travelers at p who wish to travel to i [persons]; bpp is
the total supply of travelers originating at p;

cdij length of arc (i, j)∈A under defense option d [kilometers];
qdij “equivalent travel length” added to arc (i, j)∈A under defense option d if the associ-

ated edge is attacked [kilometers] (used to penalize travel across attacked edges);
αd

ij linear term: empirically fit objective-function coefficient for (i, j) ∈ A under defense
option d [minutes/(persons× kilometers)]; and

βd
ij quadratic term: empirically fit objective-function coefficient for (i, j)∈A under defense

option d [minutes/(persons2× kilometers)].

Decision variables [units, if applicable]

wd
ij 1 if (i, j)∈E is defended using defense option d∈Dij , and 0 otherwise;
xij 1 if (i, j)∈E is attacked, and 0 otherwise; and
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yd
pij traffic volume (over a fixed time window) originating from node p that traverses arc

(i, j)∈A under defense option d [persons].

Generic constraints

ADEFw≤ bDEF generic linear constraints on defense plans; and
AATKx≤ bATK generic linear constraints on attack plans.

Formulation “DAD-Transport”:

z∗ = min
w∈W

max
x∈X

min
y∈Y (w)

f(x,y), where (1)

f(x,y) =
∑

(i, j)∈E
d∈Dij

[(
cdij + q

d
ijxij

)(
αd

ij

∑
p∈N

yd
pij +β

d
ij

(∑
p∈N

yd
pij

)2)

+
(
cdji + q

d
jixij

)(
αd

ji

∑
p∈N

yd
pij +β

d
ji

(∑
p∈N

yd
pij

)2)]
, (2)

W =

{
w ∈ {0,1}|E| |ADEFw≤ bDEF,

∑
d∈Dij

wd
ij = 1 ∀ (i, j)∈E

}
, (3)

X =
{
x∈ {0,1}|E| |AATKx≤ bATK}, and (4)

Y (w) =


y ∈R|N | |A| |D|

+

∣∣∣∣∣ ∑
j | (i, j)∈A

d∈Dij

yd
pij −

∑
j | (j, i)∈A

d∈Dij
yd
pji

= bpi ∀p, i∈N,

yd
pij + y

d
pji ≤ bppw

d
ij ∀p∈N, (i, j)∈E, d∈Dij

 . (5)

With one caveat discussed below, the objective function (1) inDAD-Transportmeasures
total travel time for all travelers, given a defense plan, an attack plan, and a set of “traveler
flows” in the network. Total time on each arc increases quadratically with the volume of
traffic on that arc; §4 provides more details.
The constraint set W (see Equation (3)) will limit total defense expenditures to a posited

budget, represented as a simple cardinality constraint.
The constraint set X (see Equation (4)) will limit the total number of edge attacks to a

reasonable, worst-case, upper bound.
The first set of constraints in Y (w) (see Equation (5)) define standard, multicommodity

flow-balance constraints that ensure that all bpp travelers originating at each p∈N arrive at
appropriate destinations. The second set of constraints in Y (w) requires that all travelers
traversing an arc use the “version” of that arc, d, that has been prepared by the selected
defense option. That is, if wd

ij = 1 for edge (i, j), then all travelers traversing arcs (i, j)
and (j, i) are governed by parameters determined by defense option d for edge (i, j) and
by whether or not the edge has been attacked. A caveat pertains, however. If a vulnerable
edge (i, j) is attacked in our examples, it is destroyed. In this case, the corresponding arc
parameters are set so that all flow on (i, j) and (j, i) is 0, unless positive flows are required
for feasibility. Positive flow on “destroyed arcs” indicates that the network is disconnected
and that total travel time is effectively infinite.
Constraints on defense expenditures will be known, and traffic engineers should have a

good model of traffic flow in the region. Thus, partsD andD of this model, i.e.,W and Y (w)
should be well understood. “A,” i.e., constraint set X, will be modeled in generic terms, and
potential attackers and their capabilities will be studied using “capabilities analysis” (e.g.,
Cragin and Daly [27, pp. 39–57], Steinhäusler et al. [70]). This analysis should provide a
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reasonable range for the maximum number of bridges that might be attacked simultaneously.
In practice, results within that range would be produced using DAD and presented to
decision-makers for final action; the examples in §5 illustrate.
Notes. (a) A more detailed model might measure total travel time per person as above, but

would adjust for vehicles and the number of persons per vehicle. In effect,DAD-Transport
assumes pedestrian traffic or one person per vehicle.
(b) “Supply of travelers” assumes a period of time over which all travel will take place,

such as during a peak morning commute period of two hours. Parameters cdij , α
d
ij , and β

d
ij

are set accordingly.
(c) The constraints ADEFw ≤ bDEF and AATKx≤ bATK represent arbitrary linear con-

straints on defense plans and attack plans, respectively. The only such constraints used in
our examples are (a) a cardinality constraint on the number of bridges defended, nDEF,
(b) a cardinality constraint on the number of bridges attacked, nATK, and (c) constraints
to reflect that fact that “nonbridges” are invulnerable to attack and need not be defended.
Constraints ADEFw≤ bDEF and AATKx≤ bATK could reflect limited budgets covering sev-
eral categories (e.g., money, labor resources, energy resources), logical conditions between
attacks or between defenses, and so on.

4. A Decomposition Algorithm to Solve DAD
This section develops a decomposition algorithm to solve DAD-Transport and more gen-
eral instances of DAD. We first present additional detail on the operator’s model for this
problem, and describe several subsidiary formulations used in the algorithm.

4.1. The Operator’s Problem
Given a fixed infrastructure-defense plan ŵ ∈W , and a fixed attack plan x̂∈X, the following
model defines the operator’s problem:

DAD(ŵ, x̂, ·): z∗
D(ŵ, x̂) = min

y∈Y (ŵ)
f(x̂,y).

The notation required to describe the full DAD model in Equations (1)–(5) makes the
operator’s problem appear more complicated than it is. Ignoring the caveat on penalties used
to discourage use of destroyed bridges, DAD(ŵ, x̂, ·) is a simple multicommodity network-
flow model with a quadratic objective function. Each commodity is defined in terms of the
origin of a group of travelers, but could be based on destination, or a commodity could be
defined for each origin-destination (O-D) pair. The objective function measures total travel
time over all travelers, over some normalizing interval of time, by summing travel time on
each arc (i, j)∈A (through a summation over (i, j)∈E). Because of congestion effects, total
travel time for users of arc (i, j) depends quadratically on the total number of travelers that
traverse that arc, ȳd

ij ≡
∑

p∈N y
d
pij .

Total travel time on arc (i, j) may be expressed as ȳd
ijg(ȳ

d
ij), where g( · ) is called a “delay

function.” Numerous delay functions have been used in the literature, but simple polynomial
functions are standard and have been validated experimentally (e.g., LeBlanc et al. [48]).
We use a linear delay function for computational simplicity here, yielding a quadratic objec-
tive function; future work will investigate the use of using higher-degree polynomials and,
perhaps, other functional forms.
The nonlinear program DAD(ŵ, x̂, ·) (Beckmann [6]) derives from the basic traffic-

equilibrium model (or traffic assignment model) described by Wardrop [75]. Florian and
Nguyen [32] provide one the first validations of the model. Many refinements of the basic
model have appeared since the 1960s (e.g., Boyce and Bar-Gera [10]), but the basic model
is still in use (Correa and Stier-Moses [24]). We note that early traffic-equilibrium models
defined commodities through O-D pairs, and formulations are still often described in that
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manner. Defining commodities by origin or by destination, however, is clearly more efficient
(Petersen [60], Leblanc et al. [48]).
O-D demands are estimated by sampling actual traffic and statistical estimation. The com-

plete estimation step is often referred to as “trip generation”; for example, see Van Zuylen
and Willumsen [72], and Mannering et al. [52, pp. 293–298]. As described by Wardrop [75],
each traveler is assumed to follow an O-D path such that total travel time for all travelers
is minimized: this maximizes “societal good.” Wardrop’s equilibrium conditions imply that
total travel time on a link is a convex increasing function of traffic density; empirical work
verifies the validity of this functional form. A more refined model might replace travel time
with a “generalized cost of travel,” which could include travel time, tolls, out-of-vehicle time,
and other factors; see Abrahamsson and Lundqvist [1] and Boyce and Bar-Gera [10].

4.2. The Attacker-Defender Subproblem
The overall decomposition algorithm for DAD will solve a sequence of attacker-defender
subproblems that result by fixing ŵ ∈W :

DAD(ŵ, ·, ·): z∗
AD(ŵ) =max

x∈X
min

y∈Y (ŵ)
f(x,y).

An optimal or near-optimal solution to this problem is denoted x∗(ŵ).
DAD(ŵ, ·, ·) is a “simple” attacker-defender model, which we solve through Benders

decomposition. This solution method is standard for such problems, so we omit a description
(see Cormican et al. [23], Israeli and Wood [45] for examples). We find it computationally
advantageous to specify a nonzero optimality gap in the solution of DAD(ŵ, ·, ·), however,
and this complicates the decomposition algorithm for DAD. Zakeri et al. [80] describe
and overcome a similar complication, which arises when solving a linear program through
Benders decomposition, and not solving subproblems to optimality. Section 4.4 will explain
how to handle the DAD version of this issue, and we make several definitions in advance
for that explanation:

εAD user-specified, nonnegative, relative optimality gap for the decomposition algo-
rithm that solves DAD(ŵ, ·, ·),

zLO
AD, z

UP
AD lower and upper bounds provided at termination of the decomposition algorithm

that solves DAD(ŵ, ·, ·); these values must satisfy zUP
AD− zLO

AD ≤ εADz
LO
AD.

4.3. A Detailed Decomposition Algorithm
We develop a decomposition algorithm here to solveDAD-Transport and similar problems.
Some additional definitions follow:

X̂ the set of all feasible attack plans viewed as an enumerated set; and
ydk
pij traffic volume originating from node p that traverses arc (i, j) ∈ A under defense

option d, in response to attack plan x̂k ∈ X̂ [persons].

Letting yk denote the vector form of ydk
pij , we may now reformulate DAD-Transport as

z∗ = min
w∈W

max
x̂k∈X̂

min
yk∈Y (w)

f(x̂k,yk). (6)

Note that yk ∈ Y (w) implies a separate set of (identical) constraints for each flow
vector yk.

Because the defender in formulation (6) can now choose each set of flows yk independently
in anticipation of each feasible attack plan, we can exchange the innermost “min” and “max”
to obtain a conceptually simpler min–max problem:

z∗ = min
w∈W,yk∈Y (w)

max
x̂k∈X̂

f(x̂k,yk). (7)
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Naturally, we cannot hope to solve realistic instances of (7) by enumerating all attack
plans, and creating a separate traffic-flow problem for each. But, this formulation leads to
a decomposition algorithm that generates attack plans on an as-needed basis, and we hope
to identify an ε-optimal solution long before enumerating all attack plans. Given a set of K
feasible attack plans X̂K = {x̂1, . . . , x̂K}, we formulate a “relaxed DAD master problem”
for this decomposition algorithm as follows:

DAD-MP(X̂K):

z∗(X̂K) = min
w∈W,y1,...,yK

z (8)

s.t. z ≥ f(x̂k,yk) ∀ x̂k ∈ X̂K , (9)

yk ∈ Y (ŵ) for k= 1, . . . ,K. (10)

This model is a quadratically constrained integer program that may not be solved exactly,
and the following parameter and output values must therefore be defined:

εMP user-specified, nonnegative, relative optimality gap for the algorithm that solves
DAD-MP(X̂K); and

zLO
MP, z

UP
MP lower and upper bounds provide at termination of the algorithm that solves

DAD-MP(X̂K); these values must satisfy zUP
MP− zLO

MP ≤ εMPz
LO
MP.

We can now state a full decomposition algorithm for solving DAD.

Algorithm DAD-Decomp
Input: Full DAD problem data and optimality tolerances ε, εMP, εAD ≥ 0 for the

overall decomposition, the DAD master problem, and the AD
subproblem, respectively.

/*ε≥ εMP is assumed.*/
Output: ε-optimal defense plan w∗ and corresponding attack plan x∗;
1. LB←−∞; UB←∞; K← 1;
2. for (all (i, j)∈E){ŵd0K

ij ← 1; ŵd0K
ij ← 0, d 	= d0;};w∗← ŵK ;

/*That is, choose “no defense” as the initial defense plan and as
the incumbent solution.*/
3. Subproblem: Solve DAD(ŵK , ·, ·) to determine attack plan x̂K given defense

plan ŵK such that zUP
AD− zLO

AD ≤ εADz
LO
AD;

/*We assume zUP
AD, z

LO
AD ≥ 0*/

4. if (zUP
AD <UB){UB← zUP

AD; w∗← ŵK ; x∗← x̂K ;}
5. if (UB−LB≤ εLB) go to End;
6. if x̂K repeats any prior attack, i.e., x̂K ∈ X̂K , temporarily add one

“solution-elimination constraint” to DAD(ŵK , ·, ·) for each x̂k ∈XK , and
re-solve for a new x̂K ;

/*Solution-elimination constraints are described below. For simplicity, the algorithm
ignores the possibility that problem in Step 7 could be infeasible.*/
7. X̂K← X̂K−1 ∪{x̂K};
8. Master Problem: Solve DAD-MP (X̂K) to determine defense plan ŵK+1

such that zUP
MP− zLO

MP ≤ εMPz
LO
MP;

/*We assume zUP
MP, z

LO
MP ≥ 0*/

9. if (zLO
MP > LB) LB← zLO

MP;
10. if (UB−LB≤ εLB) go to End;
11. K←K +1; go to Subproblem;
12. End: print (“ε-optimal defense plan and corresponding attack plan are,” w∗, x∗).

If the AD subproblems are not solved to optimality in each step, the algorithm can repeat
an attack plan. This can lead to cycling, because the bounds will not change, the master
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problem’s feasible region will not change, no new defense-plan solutions need be generated,
and no new attack plan need be generated in response. There are a few ways to handle this
difficulty, the simplest of which is to record every subproblem solution (i.e., attack plan)
observed, and, if one repeats, reduce the tolerances on the respective problem(s) until a new
solution is found. This may cause run times to increase dramatically, however.
Another approach, the one we take, forces the generation of a new attack plan (the

algorithm assumes one exists) by adding a set ofK “solution-elimination constraints” (SECs)
whenever an attack plan x̂K repeats:∑

(i, j)∈E: x̂k
ij=0

xij ≥ 1 ∀ x̂k ∈ X̂K . (11)

The SEC in (11) based on a specific attack plan x̂k makes that plan infeasible in the
master problem, along with any “dominated” plans x̂ ≤ x̂k. Thus, no solution x̂k ∈ X̂K

can be regenerated at Step 7 of the algorithm. (Note that no bounds are updated in the
algorithm when using SECs because the validity of those bounds cannot be guaranteed.) The
SEC used here, which is a special case of a “super-valid inequality” (Israeli and Wood [45]),
requires that any attack plan that targets multiple components dominate all plans that
target a strict subset of those components (i.e., the attacker will always prefer to target more
components of the system than fewer). If no such dominance relationship exists, constraints
that enforce a lower bound of 1 on the Hamming distance between a new solution and each
x̂k ∈ X̂K could replace (11); see Brown and Dell [13]. We note that adding SECs for ŵ in
the master problem provides a third approach to handling nonzero optimality gaps in the
decomposition algorithm, but we have not yet explored that possibility.

5. A Computational Example: The Seven Bridges of Königsberg
In 1758, Leonhard Euler published a paper using as a motivating example the propensity of
city residents to traverse the seven bridges of Königsberg (Euler [31]); see Figure 1(a). Using
the graph shown in Figure 1(b), Euler proved that no walking path existed through the
city that crossed each bridge exactly once. We adapt this well-known example from seminal
graph theory to more modern concerns.
City officials are concerned about the disruptions to city traffic, and thereby to the local

economy, that would result from the destruction of one or more bridges by terrorists. Officials

Figure 1. The seven bridges of Königsberg.
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Notes. (a) A drawing of the seven bridges (Kraitchik [47, pp. 209–211]). (b) In Euler’s graph representation,
each vertex is a land mass and each undirected edge is a bridge. (c) For illustrative purposes, we adopt
a network representation that reflects the bridges (heavy lines), normal road segments (horizontal lines at
top and bottom) and artificial, “intra-island edges” represented by the graph cliques on islands A and D.
Bridges are subject to attack and congestion; road segments are subject to congestion but not attack; and
the intra-island edges are subject to neither attack nor congestion, but do require a fixed amount of time to
traverse. For an indication of the scale here, note that the small central island is about one half kilometer
in its longest dimension.
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Table 1. Node data for DAD modeling of the Königsberg transportation
network.

Nodes p ∈ N Supply bpp (persons) Demand −bpi (persons)

Aa, Ab, Ac, Ae, 200 Proportional to supply:

Af, De, Df, Dg −bpi ≡ bppbii

/∑
j �=p

bjj ∀p, i ∈ N

Ba, Bf, Bg 800
Cc, Cd, Cg 1,200

Notes. The data here apply to the DAD-Transport model of the network shown in
Figure 1(c). (In 1700, Königsberg had a population of about 40,000, so these numbers
are plausible.)

also want to know if worst-case disruptions could be reduced, i.e., resilience enhanced, by
defending bridges from attack or making other infrastructure improvements. We measure
functionality of the transportation network in terms of the average travel time that a citizen
would experience in moving about the city on a busy morning.
The data requirements for this problem are modest. Figure 1(c) shows an abstract repre-

sentation of the main routes in the city. Table 1 provides data on the nodes for this problem;
Table 2 provides basic edge and arc data in the absence of attack; the appendix presents
detailed arc data for all examples. The DAD examples presented here are small enough
that they could be solved by total enumeration, that is, by solving the nonlinear program
DAD(ŵ, x̂, ·) for each feasible combination of ŵ and x̂. The decomposition applies broadly,
however, and we trust that the examples serve well to illustrate its use.
We must specify X and W for this problem, also. Capabilities analysis indicates that

bridges are key targets, and that at most three could be attacked at one time. Thus,

X ≡
{
x∈ {0,1}|E|

∣∣∣∣∣ ∑
(i, j)∈EB

xij ≤ nATK, xij ≡ 0 ∀ (i, j)∈E\EB

}
for nATK = 0,1,2 or 3.

Planners believe that the city budget will allow for the defense of up to four bridges,
and thus

W ≡
{
w ∈ {0,1}|E|

∣∣∣∣∣ ∑
(i, j)∈EB

wd1
ij = nDEF,

∑
d∈Dij

wd
ij = 1 ∀ (i, j)∈E,

wd0
ij ≡ 1 ∀ (i, j)∈E\EB

}
for nDEF = 0,1,2,3 or 4.

Table 2. Edge and arc data for DAD modeling of the Königsberg transportation
network: nominal system parameters (i.e., assuming ŵ= 0, x̂= 0 and d= d0).

Edge type Edges (i, j) ld0
ij , ld0

ji αd0
ij , αd0

ji βd0
ij , βd0

ji

Bridge (Aa,Ba), (Ab,Bb), (Ac,Cc), (Ad,Cd), 1 5 0.020
(Ae,De), (Bf ,Df), (Cg,Dg)

Road segment (Ba,Bb), (Bb,Bf), (Cc,Cd), (Cd,Cg) 1 15 0.005
Intra-island All having form (Ax,Ay) or (Dx,Dy) 1 5 0.000

Notes. The data in this table covers all edges in the network shown in Figure 1(c), and all implied
antiparallel arcs. All edge lengths are 1 kilometer for simplicity. The intra-island edges (i, j) rep-
resent a complex network which is assumed free of congestion delays, i.e., βd0

ij = 0. However,
traversing any of these edges does incur five minutes of travel time, i.e., αd0

ij = 5. (Note that bridge
edges can also be designated by single letters, i.e., a,b, . . . ,g.)
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Figure 2. Nominal, optimal operation of the Königsberg transportation network bridges.
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Notes. (a) Optimal number of travelers using each traffic lane, on each road and bridge, under nominal
conditions. (The double lines here represent the two arcs for each edge.) The average travel time is 37.6 min-
utes. (b) Optimal routes followed by the 1,200 travelers originating at node Cc. For clarity, we omit arcs
without flow.

In the absence of attack, travelers may use any of the bridges to convey traffic. The
minimum-time solution incurs an average travel time of 37.6 minutes; Figure 2 depicts the
optimal solution. We cannot easily illustrate the individual routes followed by each of the
7,600 travelers, but Figure 2(a) provides a sense of congestion. In addition, for travelers
originating at one selected node, Cc, Figure 2(b) shows the total number of travelers on
each road and bridge.

5.1. Königsberg’s Bridges Attacked with No Defenses
It is worthwhile investigating, by solving AD for various values of nATK, how attacks might
affect Königsberg’s traffic flow if no bridges are defended. It turns out that the most disrup-
tive single-bridge attack (nATK = 1) is on bridge c, but this results in an increase in average
travel time of only 9.2 minutes, about 24%; see Figure 3(a). If capabilities analysis shows
that terrorists could destroy only a single bridge, we might conclude that the city is already
“well defended.” The optimal two-bridge attack targets bridges c and d (Figure 3(b)), and
average travel time increases by 44.5 minutes. Perhaps officials should become worried if a
two-bridge attack appears possible.

Figure 3. Traffic flow in Königsberg resulting from the most disruptive one- and two-bridge attacks
on an undefended system.
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Notes. (a) The worst-case one-bridge attack destroys c, resulting in an average travel time of 46.8 min-
utes. (b) The worst-case two-bridge attack destroys bridges c and d, resulting in an average travel time of
82.1 minutes. In each case, the figures indicate the optimal rerouted flows in response to the attacks.
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Figure 4. Traffic flow in Königsberg resulting from all possible one-, two-, and three-bridge attacks
on an undefended system.
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Notes. (a) The plot depicts average travel time resulting from each attack plan having nATK = 1,2, or 3;
results are ranked, from most to least disruptive for each value of nATK. There are three three-bridge attacks
that disconnect the network, so the resulting average travel time, denoted “140∗,” could be arbitrarily
high. The inset expands results for single-bridge attacks and shows the actual bridge involved in each.
(b) Considerable variation appears in the disruption caused by attacks involving one, two, or three bridges.
In particular, the most disruptive two-bridge and three-bridge attacks result in substantially more travel
delay than a random attack plan having the same number of bridges.

Figure 4 shows, given no defenses and for different values of nATK, rank-ordered lists of
optimal attack plans and their outcomes. We observe several features. First, for any value
of nATK, a considerable difference can appear in the disruption caused by an optimal attack
plan versus a plan chosen randomly. For nATK = 1, the loss of bridge c increases the average
travel time by 9.2 minutes, while the expected increase in average travel time is 7.1 minutes
for a “random attack,” that is, if a “dumb” attacker were to choose to attack each bridge
with probability 1/7. For nATK = 2, the loss of bridges c and d increases the average travel
time by 44.5 minutes, while a random attack increases expected average travel time by only
18.9 minutes. When nATK = 3, three attack plans, namely [a,b, f ], [c,d,g], and [e, f ,g], can
disconnect the network, and average travel time can become arbitrarily long. In contrast, a
random three-bridge attack among the other combinations results in an expected increase
to average travel time of (only) 36.0 minutes.
In this example, the optimal one-bridge attack [c], optimal two-bridge attack [c,d], and

optimal three-bridge attack [c,d, f ] define monotonic attack plans, i.e., x∗
1 ≤ x∗

2 ≤ x∗
3, where

the subscript corresponds to nATK. This is good news for an attacker of Königsberg, who
can follow a simple prioritized list of attacks: c then d then f. If he is stopped (for example,
caught or killed) after attacking n< 3 bridges, he has been maximally disruptive given
that nATK = n. For larger infrastructure systems, however, we typically find that simple
prioritized lists yield a sequence of suboptimal attack plans.
Results in Table 3 also indicate the dubiousness of basing infrastructure-defense analysis

on a single, heuristically chosen attack plan. For instance, a reasonable greedy heuristic
would first attack the link with the largest nominal traveler flow, but such a choice is only
the third best for the attacker. See Smith et al. [69] for a related discussion.

5.2. Optimal Defenses for Königsberg
We conclude from the previous section that (a) a small number of attacks can cause substan-
tial disruption to travel in Königsberg, (b) a defensive model that assumes random attacks
could leave the city open for a highly disruptive optimal attack plan, and (c) a defensive
model that plans against a heuristically derived attack plan is also open to making a seri-
ous error. So, solving DAD near-optimally could give some important information to city
officials, and any solution needs to be based on, or at least imply, near-optimal solutions
of AD(w).
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Table 3. Heuristically chosen and optimal one-bridge attacks.

Total baseline Rank in Increase in average travel Rank in
Bridge traffic (persons) baseline traffic time if destroyed (minutes) disruption

a 1,190 5 6.9 4
b 1,444 2 6.4 6
c 1,407 3 9.2 1
d 1,687 1 8.3 3
e 661 7 3.1 7
f 1,070 6 6.9 5
g 1,205 4 8.9 2

Notes. The bridge that carries the most traffic is not necessarily the bridge that, if lost, results in the
greatest disruption (increase in average travel time).

Assume now that analysts believe that the worst possible attack on the Königsberg bridges
would destroy two or three bridges. City officials are unsure of their budget for bridge
defenses, and would like to know the optimal set of bridges to defend for each “budget level”
nDEF ∈ {1, . . . ,4}. Solution of DAD-Transport will provide the answers.

We use GAMS (GAMS [35]) to formulate all models in the decomposition for DAD-
Transport and solve them using CPLEX 12.02 (IBM [44]) on a Lenovo T510 laptop com-
puter. Master problems and nonlinear subproblems are solved by specifying the quadrat-
ically constrained programming option in GAMS (“QCP = CPLEX”), which also handles
quadratic objective functions. We run the full decomposition algorithm on the Königsberg
data using tolerances ε= 0.01, εMP = 0.01, and εAD = 0.001. No individual problem requires
more than 10 minutes to solve and, in total, results reported in Table 4 require less than
20 minutes to produce.
Table 4 presents initial results. The table shows the variety of optimal defense plans that

arise when multiple bridges can be defended and when multiple bridges may be attacked.
Note that the optimal defense-plan vector is not necessarily monotonic in the number of
bridges defended. Specifically, for neither nATK = 2 nor nATK = 3 does an optimal one-bridge

Table 4. Optimal bridges to defend in Königsberg.

Number Number Bridges Minimized Num. of Num. of
of bridges of bridges Bridges attacked average AD problems AD problems
attacked defended optimally after travel time solved in Alg. solved if using
nATK nDEF defended defense (minutes) DAD-Decomp enumeration

2 1 c a, b 75.9 3 7
2 b, d c, g 65.3 5 21
3 b, c, d a, f 58.9 7 35
4 b, c, f , g a, d 55.0 12 35

3 1 d∗ a, b, f ∞ 3 7
2 c, f a, b, g 103.4 6 21
3 b, d, g c, e, f 70.5 9 35
4 b, d, f , g a, c, e 59.2 12 35

Notes. For each number of attacks and defenses this table presents an optimal defense, and a resulting
optimal attack, determined using the decomposition algorithm. For three attacks and one defense, the
optimal solution (defend bridge d) is arbitrary (denoted by an asterisk): if any single bridge is defended,
three bridges can always be attacked so that some travelers cannot reach their destinations. In such a case,
the resulting objective-function value is arbitrarily large.
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Table 5. Optimal bridges to defend and road segments to upgrade in Königsberg.

Number Number Bridges Minimized Avg. travel time
of bridges of bridges Optimal Optimal attacked average decrease beyond
attacked defended bridges to road segments after travel time bridge defense
nATK nDEF defend to upgrade defense (minutes) alone (minutes)

2 1 c (Bb,Bf), (Cd,Cg) a, b 68.5 7.3
2 b, d (Cc,Cd), (Cd,Cg) c, g 59.0 6.3
3 b, c, d (Bb,Bf), (Cd,Cg) a, f 54.4 4.6
4 a,d, f , g (Cc, Cd), (Cd, Cg) b, c 49.3 5.7

3 1 d∗ (Cc,Cd), (Cd,Cg) a, b, f ∞ —
2 c, f (Bb,Bf), (Cd,Cg) a, b, g 96.1 7.4
3 b, d, g (Cc,Cd), (Cd,Cg) a, c, f 64.2 6.3
4 a, d, f , g (Cc, Cd), (Cd, Cg) b, c, e 52.7 6.5

Notes. Again, the asterisk in the first row for three attacks indicates that the network becomes disconnected.
With the exception of the shaded rows involving 4 defenses, the optimal bridge defenses and the optimal
attacks remain the same with or without road-segment upgrades. Average delays are reduced by between
7% and 11% compared to Table 4.

defense define a subset of an optimal two-bridge defense. Thus, no optimal prioritized list of
defenses can be created. (Alternate optimal solutions might make this possible, but do not.)
As one would expect, solutions reflect “diminishing returns” as the number of defended

bridges grows. For example, for both values of nATK, the difference between defending two
bridges and defending three exceeds the difference between defending three and four.

5.3. Optimal Defenses for Königsberg: Extensions to New Construction
In addition to considering defenses on some of the city’s bridges, a separate line item exists
in the Königsberg city budget to upgrade any two of the road segments (Ba,Bb), (Bb,Bf),
(Cc,Cd), (Cd,Cg) for less congestion and faster travel. The question is then: which combi-
nation of nDEF defended bridges and two upgraded road segments creates the most resilient
transportation system, given that two or three bridges might be attacked? For our purposes,
an upgrade on a road segment reduces αij = 15 to αij = 10 and reduces βij = 0.005 to
βij = 0.001. To evaluate these alternatives, we add an edge for each candidate road improve-
ment to the base model, and add an ad-hoc constraint limiting the number of these new
defensive improvements to two.
Algorithm DAD-Decomp extends to this new situation easily and produces the results

shown in Table 5 in about 16 minutes of computation time. Unfortunately, those results also
show that that the city cannot substantially improve resilience to attack of its transportation
network by upgrading road segments.
One city planner therefore asks “What if we shift those road-upgrade funds into building

a new, invulnerable bridge (Ba,Cc)?” (Actually, current-day Kaliningrad possesses such a
bridge.) We assume that the budget remains unspecified for protecting the other bridges, and
compute results analogous to Tables 4 and 5 with an invulnerable bridge (i, j) = (Ba,Cc)
in place, having parameters cij = 3, αij = 5, and βij = 0.01. (The new bridge will be three
times longer than the other bridges, but subject to less congestion; compare to values in
Table 3.) This requires adding just one edge to the base case to represent the new bridge.
The results in Table 6, computed in less than four minutes, show that the new bridge would
enhance resilience of the Königsberg road-and-bridge network substantially, and that option
is much better than upgrading any two road segments.
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Table 6. Optimal bridges to defend in Königsberg given that an invulnerable bridge (Ba,Cc) is
built, and no other new construction is possible.

Number Number Optimal Bridges Minimized Avg. travel time
of bridges of bridges bridges attacked average travel decrease beyond bridge
attacked nATK defended nDEF to defend after defense time (minutes) defense alone (minutes)

2 1 d e,g 53.5 22.3
2 d,g b, f 52.2 13.1
3 d, f ,g a,b 48.8 10.2
4 b,d, f ,g a,c 43.8 11.2

3 1 g a,b, f 75.1 ∞
2 f ,g c,d,e 60.5 43.0
3 b,d,e c, f ,g 53.3 17.3
4 b,d, f ,g a,c,e 46.1 13.1

Notes. Note the much-reduced travel times compared to Tables 4 and 5. With the new bridge, a one-bridge
defense also suffices to prevent a three-bridge attack from disconnecting the network. The shaded rows
identify optimal defense and attack plans that differ from solutions obtained without the new-bridge option.

6. Conclusions and Areas for Future Research
This paper has demonstrated how a three-stage, sequential game provides an appropriate
paradigm for planning budget-limited defenses and/or new construction that will maximize
the resilience of a critical infrastructure system subject to attack by an intelligent adversary.
A defender-attacker-defender model (DAD) represents the following: (1) a defender makes
budget-limited investments to improve an infrastructure system; (2) an attacker sees those
investments and attacks the system so as to maximize damage; and (3) damage is measured
in terms of the cost (or increased cost, decreased value, etc.) that the defender-as-operator,
or simply operator, incurs when operating the system optimally. Cost is evaluated by solving
an operator’s model which, rather than using untested surrogate measures of operational
effectiveness, reflects real measures such as travel delay, unserved demand, throughput, etc.
Operations of an electric power grid, for instance, should be modeled using an industry-
standard power-flow model, and road congestion should be measured using an industry-
standard traffic-flow model (at least until the usefulness of simpler surrogate models is
established). Tests using a standard traffic-equilibrium model show how no actual operator
of the system may be necessary, as this model represents the actions of delay-minimizing
travelers.
The paper has also developed a general decomposition algorithm for solvingDADmodels.

We solve model instances with a relative optimality tolerance of 1% (i.e., ε= 0.01) to enable
interested researchers to reproduce our results. Even though our algorithm’s master problem
is an integer nonlinear programming problem, this tight tolerance leads to scenario solution
times of only a few seconds to a few minutes.
The attacks envisaged in this paper are primarily physical, but communications net-

works like the Internet are subject to “cyber-attacks.” Defense against cyber-attacks may
be amenable to study via DAD, and this area needs investigation. We have investigated
single infrastructure systems, yet attacks on one system may affect another; for example, an
electric power line carried by a bridge may be lost if the bridge is attacked, and the resulting
power outage may increase traffic delays through a loss of traffic signals. This topic certainly
warrants study, also.

Appendix
This appendix presents the arc data which, along with the node data in §3, suffices to reproduce
all results in this paper. See §2.1 for definitions.
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Table A.1. Base-case arc data for undefended roads and bridges of Königsberg.

Arc tail i Arc head j cd0
ij qd0

ij αd0
ij βd0

ij Arc tail i Arc head j cd0
ij qd0

ij αd0
ij βd0

ij

Aa Ab 1 0 5 0 Ab Aa 1 0 5 0
Aa Ac 1 0 5 0 Ac Aa 1 0 5 0
Aa Ad 1 0 5 0 Ad Aa 1 0 5 0
Aa Ae 1 0 5 0 Ae Aa 1 0 5 0
Ab Ac 1 0 5 0 Ac Ab 1 0 5 0
Ab Ad 1 0 5 0 Ad Ab 1 0 5 0
Ab Ae 1 0 5 0 Ae Ab 1 0 5 0
Ac Ad 1 0 5 0 Ad Ac 1 0 5 0
Ac Ae 1 0 5 0 Ae Ac 1 0 5 0
Ad Ae 1 0 5 0 Ae Ad 1 0 5 0
Aa Ba 1 1,000 5 0.020 Ba Aa 1 1,000 5 0.020
Ab Bb 1 1,000 5 0.020 Bb Ab 1 1,000 5 0.020
Ac Cc 1 1,000 5 0.020 Cc Ac 1 1,000 5 0.020
Ad Cd 1 1,000 5 0.020 Cd Ad 1 1,000 5 0.020
Ae De 1 1,000 5 0.020 De Ae 1 1,000 5 0.020
Ba Bb 1 0 15 0.005 Bb Ba 1 0 15 0.005
Bb Bf 1 0 15 0.005 Bf Bb 1 0 15 0.005
Bf Df 1 1,000 5 0.020 Df Bf 1 1,000 5 0.020
Cc Cd 1 0 15 0.005 Cd Cc 1 0 15 0.005
Cd Cg 1 0 15 0.005 Cg Cd 1 0 15 0.005
Cg Dg 1 1,000 5 0.020 Dg Cg 1 1,000 5 0.020
De Df 1 0 15 0.005 Df De 1 0 15 0.005
De Dg 1 0 15 0.005 Dg De 1 0 15 0.005
Df Dg 1 0 15 0.005 Dg Df 1 0 15 0.005

Note. These data all correspond to the “do-nothing” defense option d0.

Table A.2. Arc data for “hardening” defenses on Königsberg bridges.

Arc tail i Arc head j cd1
ij qd1

ij αd1
ij βd1

ij Arc tail i Arc head j cd1
ij qd1

ij αd1
ij βd1

ij

Aa Ba 1 0 5 0.02 Ba Aa 1 0 5 0.02
Ab Bb 1 0 5 0.02 Bb Ab 1 0 5 0.02
Ac Cc 1 0 5 0.02 Cc Ac 1 0 5 0.02
Ad Cd 1 0 5 0.02 Cd Ad 1 0 5 0.02
Ae De 1 0 5 0.02 De Ae 1 0 5 0.02
Bf Df 1 0 5 0.02 Df Bf 1 0 5 0.02
Cg Dg 1 0 5 0.02 Dg Cg 1 0 5 0.02

Notes. (See results in Table 4.) These data represent defense option d1, which applies only to bridges,
initially.

Table A.3. Arc data added to base case for upgrading condition of Königsberg roads.

Arc tail i Arc head j cd1
ij qd1

ij αd1
ij βd1

ij Arc tail i Arc head j cd1
ij qd1

ij αd1
ij βd1

ij

Ba Bb 1 0 10 0.001 Bb Ba 1 0 10 0.001
Bb Bf 1 0 10 0.001 Bf Bb 1 0 10 0.001
Cc Cd 1 0 10 0.001 Cd Cc 1 0 10 0.001
Cd Cg 1 0 10 0.001 Cg Cd 1 0 10 0.001

Notes. (See results in Table 5.) These data correspond to defense option d1.

Table A.4. Arc data for adding a new, invulnerable bridge to Königsberg.

Arc tail i Arc head j cd0
ij qd0

ij αd0
ij βd0

ij Arc tail i Arc head j cd0
ij qd0

ij αd0
ij βd0

ij

Ba Cc 3 0 5 0.01 Cc Ba 3 0 5 0.01

Notes. (See results in Table 6.) This bridge is invulnerable to attack, so only defense option d0 applies.
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