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Abstract This paper considers auctions for several distinct items in which each bidder’s valua-
tion function is determined by an optimal assignment of goods among several agents,
each with an independent valuation for each good. Given this preference structure, we
demonstrate how to compute the set of lowest Walrasian equilibrium prices, generaliz-
ing the work of Demange et al. (G. Demange, D. Gale, and M. Sotomayor. Multi-item
auctions. Journal of Political Economy 94(4):863–872, 1986), which considered the
special case in which bidders are only interested in receiving a single item.
In the more general combinatorial auction setting, where bidders may have arbitrary

valuation functions, we propose that the resulting “bid table” bidding language pro-
vides a useful communication format for use in a dynamic demand-revelation phase of
a multistage hybrid auction. This new format for demand revelation results in unique
linear item prices which can be computed in polynomial time, and with bidder input
growing quadratically in the number of items. Relative to the simultaneous ascending
auction used in combinatorial auctions by the FCC, this can be accomplished without
the exposure to receiving substitute goods at additive prices, and without the ability
for competitors to signal among themselves.

Keywords combinatorial auctions; assignment problem; gross substitutes; Walrasian equilibrium;
duality; bidder-optimal prices; bidding languages

1. Introduction
In a combinatorial auction, an auctioneer offers for sale a set of goods, and after some
prespecified bidding process takes place, bidders are awarded subsets of this set. These
subsets are often referred to as packages, bundles of goods, or combinations of goods, giving
rise to alternative terms for combinatorial auctions, such as package auctions, combinational
auctions, etc. Combinatorial auctions have been used extensively in practice in recent years
and have a well developed stream of academic literature recognizing the various economic
and computational challenges of implementing such auctions. Though we refer the reader to
a survey by Anandalingam et al. [1] or the edited volume by Cramton et al. [9] for extensive
background and motivation, we note that the primary motivation for combinatorial auctions
is the existence of bidders with nonadditive preferences for bundles of goods. That is, in
some cases bidders think of items as substitutes, so that their willingness to pay for several
items is less than the sum of the their willingness to pay for each, or in other cases as
complements, in which case the value for the collection of items is more than the sum of the
values for the individual items.
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The central computational problem in a combinatorial auction is to find a value-
maximizing collection of winning bids, often referred to as the efficient allocation problem
or the winner-determination problem. In the most general case, this optimization problem
(performed by the auctioneer) is equivalent to the set-packing problem and thus NP-hard;
see Lehmann et al. [19]. Though this computational difficulty can be reasonably ignored
in certain applications that have a relatively small number of items for sale, it has moti-
vated authors to investigate tractable special cases of the winner-determination problem;
see Müller [20] for several such special cases.
This paper examines the properties of one such special class of winner-determination

problems, in which each bidder’s preferences are determined by an optimal assignment of
goods among several agents, each with an independent valuation for each good. Given this
preference structure, we demonstrate how to compute the set of lowest Walrasian equilibrium
prices, generalizing the work of Demange et al. [12], which considered the special case in
which bidders are only interested in receiving a single item. The strengths and limitations
of the “bid table” language corresponding to this “assignment preference” structure are
shown via illustrative examples and a classification result. The latter states that the set of
preferences expressible in bid tables are properly contained in the set of preferences satisfying
the “gross substitutes property,” allowing the application of a theoretical result of Ausubel
and Milgrom [3]. This result elucidates a strength of a bid table auction, that a Vickrey-
Clark-Groves (VCG) pricing mechanism may be used with no possibility of disruption from
false-name bidding or joint deviation by losing bidders, properties not satisfied for the VCG
mechanism in general.
Further, we provide a context in which bid tables can be useful in the general combinato-

rial auction setting to reveal linear price signals (i.e., prices for individual items which can
be added to get a price for the whole bundle) and protecting bidders from certain “exposure
problems,” for example, the possibility of receiving multiple substitute goods. In Day and
Raghavan [11], we introduced a multistage combinatorial auction using a dynamic bid table
auction as an initial demand revelation phase. Bid tables allow us to utilize the intuitive
linear prices as long as it makes sense to do so, until any further bidding requires a departure
from linear prices in order to treat complementary preferences. Relative to the simultane-
ous ascending auction (SAA), this can be accomplished without the exposure to receiving
substitute goods at additive prices, and without the ability for competitors to signal among
themselves.
The remainder of the paper is organized as follows. In §2, we provide relevant background

on combinatorial auctions, linear prices, and two special classes of combinatorial auctions
studied in the literature for which linear price equilibria exist. In §3, we introduce assignment
preferences and bid tables, suggesting some of their potential uses, with the gross substitutes
characterization following in §4. In §§5 and 6 we discuss VCG and dynamic bid table auction
implementations, respectively, with conclusions provided in §7.

2. Background

2.1. Combinatorial Auctions
A general combinatorial auction has N types of items for sale, with the set of item types
denoted I = {1,2, . . . i, . . .N}, and a set of M bidders referred to as J = {1,2, . . . j, . . .M}.
For the sake of generality we allow for several identical copies of each item to be present in
the auction, with a single seller in the auction supplying the quantity supi of each item i.
For any feasible bundle or package of items x ∈ S = {x ∈ Z

N | 0≤ xi ≤ supi, ∀ i ∈ I}, each
bidder j perceives some value vj(x) ≥ 0 equal to her utility of receiving this bundle at
zero cost, with the standard assumption that vj(0) = 0, ∀ j. Further, as is common in the
combinatorial auction literature, we assume free-disposal (i.e., vj(x+ ei)− vj(x)≥ 0, ∀ i,x,
where ei is the unit vector with a 1 in the ith position) and define a bidder’s net utility as
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uj(x, pj) = vj(x)− pj , where pj is the payment made by bidder j. This latter (standard)
assumption on the functional form of a bidder’s utility function is usually referred to as
quasilinear net utility, since utility is defined to be linear over payments but potentially
nonlinear over items. Also, since the bid that a bidder submits on package x might differ
from her true valuation, the monetary bid on x will be denoted bj(x), indicating that the
bidder has offered to pay up to this amount to receive the bundle x.
In an efficient combinatorial auction, an allocation of bundles to bidders is chosen to

maximize the sum of the values of the corresponding bids accepted by the auctioneer, while
not allocating more items than are available. Also, to maintain consistency with the specified
bids and allow for a fully expressive communication of preferences, it is a standard to
assume an XOR bidding language (see Nisan [22]) for the general combinatorial auction
problem, meaning that at most one bid can be accepted from each bidder. (This forbids the
possibility, for example, that the auctioneer accepts bids from bidder j for both x1 and x2

when the bidder has specified bid amounts such that bj(x1)+bj(x2)> bj(x1+x2).) A typical
integer programming formulation of the efficient allocation problem or winner-determination
problem is thus stated as follows:

max
∑
x∈S

∑
j∈J

bj(x)yj(x) (WDP)

subject to
∑
x∈S

∑
j∈J

xiyj(x)≤ supi, ∀ i∈ I, (1)

∑
x∈S

yj(x)≤ 1, ∀ j ∈ J, (2)

where yj(x) =

{
1 if package x is awarded to bidder j,
0 otherwise,

(3)

where constraints (1) ensure that the auctioneer does not sell more copies of an item than are
available, while constraints (2) maintain the XOR language, ensuring that at most one bid
is accepted per bidder. This formulation assumes a fixed set of bids (i.e., the only variables
are the yj(x) variables), and in a sealed-bid implementation of a combinatorial auction, the
bidders may simply submit the bids on each package all at once and the auctioneer solves
this problem.

2.2. Linear Prices
In contrast to sealed-bid auctions, in many applications it is desirable to have price discovery
or demand revelation, in which bidders iteratively submit bids, receive feedback (typically in
the form of prices, and usually a linear price for each item), and revise their bids accordingly
to match new prices or restrictions, etc. In this case we also consider a price vector p where
each component pi denotes a price for item i, and the resulting analogous linear-price utility
function for bidder j is expressed as uj(x,p) = vj(x)−

∑
i∈I pixi. Also in the environment

of linear prices, we say that a bundle of items x is demanded by j at a price p if x maximizes
net utility for bidder j at p. By denoting the set of all bundles demanded by j at price p
as Dj(p), we may write this mathematically as

Dj(p) = argmax
x∈S

uj(x,p).

A bidder may demand several bundles at p if each maximizes net utility, and demands
0= [0,0, . . .0] when prices are too high.
In order for linear prices to be a useful indicator of demand in the auction, it is typical

to want prices that are accurate and separate winning bundles from losing bundles. That is,
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if the auction were to close immediately, we want the current prices to reflect the actual
payments made by winners (accuracy) and for the current price of any bundle to be higher
than what those not winning it are willing to pay (separation). Accuracy simply requires
that each bidder’s payment and the allocated bundle, denoted xj , satisfy pj =

∑
i∈I pix

j
i .

Separation requires that xj ∈ Dj(p) for all bidders j. In this environment, an allocation
with accurate and separating prices form what is known as a Walrasian equilibrium.

Definition 1. An allocation of bundles to bidders (x1,x2, . . .xj . . .xM ) and price vector p
constitute a Walrasian equilibrium if and only if for every bidder j, xj ∈Dj(p).
Unfortunately, Walrasian equilibrium prices may not exist in a combinatorial auction when

items are complements, as demonstrated by the following example, where we assume one
copy of each item and use set notation (rather than vector form) to denote a bundle. That is,
for the sake of brevity, we use the set notation {B,C} in place of the vector [0,1,1], etc.
Example 1. In a four-bidder, three-item auction let the bids on items A, B, and C be
as follows:

b1{A,B,C}= 6, b2{A,B}= 5,
b3{A,C}= 5, b4{B,C}= 5.

Clearly, the efficient solution is to award all three items to bidder 1, but what prices can be
assigned to the individual items that separate the winner from the losers? In order for the
losing bidders to be satisfied, the sum of the prices of the items in a bundle should exceed
any losing bid on the bundle:

pA+ pB ≥ 5,
pA+ pC ≥ 5,
pB + pC ≥ 5.

But these inequalities imply that pA + pB + pC ≥ 7.5, a total payment that is too high for
bidder 1, who will pay at most 6.

This example illustrates the well known failure of linear prices, that there may exist
no linear prices to support a Walrasian equilibrium. At the conclusion of a combinatorial
auction allowing for the most general expression of preferences, separating prices can only
be expressed in terms of bundle-payments made by the winners and cannot be decomposed
into meaningful individual item prices.

2.3. Special Cases
Walrasian equilibrium prices are guaranteed to exist in certain special cases of a combina-
torial auction, however, and here we note the two most relevant such cases as previously
studied in the literature. First, when each bidder is interested in winning at most one
item, a condition referred to as unit-demand preferences, the resulting multiunit auction
has been called “the assignment game” and studied extensively in the context of matching
markets. In this special case we have vj(x) =maxei≤x vj(ei) for all j and x, and a bidder’s
preferences can be compactly represented by the list of values for each individual item.
The winner-determination problem can then be formulated as an assignment problem (also
know as maximum weight bipartite matching), which is known to have a totally unimodu-
lar constraint matrix, and thus the linear programming (LP) relaxation solves the integer
winner-determination problem. The relevant results from this stream of literature tell us
that any set of prices from the dual to this LP relaxation forms a Walrasian equilibrium, and
that the well-known Hungarian algorithm finds the unique “bidder-optimal” or “minimal”
Walrasian equilibrium prices for the case of unit-demand bidders. For further background on
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this material see Demange et al. [12], Roth and Sotomayor [23, Chapter 8], and Nemhauser
and Wolsey [21, pp. 540–544].
This paper studies many of the same economic properties as Roth and Sotomayor [23]

and Demange et al. [12], but we move from the unit-demand model to a more general case
in which bidders are represented by more than one unit-demand “agent” (i.e., each agent
is just a single unit-demand bidder), and experience the sum of the utilities each of their
own agents gets for being matched to an item. The Hungarian algorithm will not provide
minimal Walrasian equilibrium prices in this larger context, but we provide an algorithm to
compute such minimal prices in §6.
Bikhchandani and Ostroy [6] illustrate a more general set of special cases: when the LP

relaxation of problem WDP solves to integral optimality, the LP dual to this relaxation
provides Walrasian equilibrium prices (based on bids rather than true preferences). This
dual can be written as follows:

min
∑
i∈I

supi pi+
∑
j∈J

sj (WDP-D)

subject to
∑
i∈I

xipi+ sj ≥ bj(x), ∀ j ∈ J, ∀x∈ S, (4)

pi ≥ 0, ∀ i∈ I, (5)

sj ≥ 0, ∀ j ∈ J. (6)

Based on complementary slackness conditions, pi variables can indeed be interpreted as
linear item prices, while sj variables indicate bidder j’s surplus, or observed net utility,
and the following statements are true: When bidder j is awarded xj , her surplus is her bid
minus her payments. When an item goes unsold its price must equal zero. When a bidder
is awarded no bundle, her surplus must equal zero.
From constraints (1), we also have that for any bundle a bidder j does not receive, the

prices are such that j’s bid on this bundle minus its price (i.e., bidder j’s perceived surplus
for this bundle) is not greater than the surplus for the bundle actually awarded. This verifies
that each awarded bundle belongs to the bidder’s demand set (based on submitted bids)
thus verifying the Walrasian equilibrium property.
This paper also investigates a special class of winner-determination problems for which

the LP relaxation solves to integral optimality. Unlike the case described by Bikhchandani
and Ostroy, however, we use a formulation of winner determination that is quadratic (rather
than exponential) in the number of items, and find that not all of the same properties hold.
In particular, we will see that although the LP dual of the winner-determination problem for
assignment preferences does contain only Walrasian equilibrium prices, it does not contain
all such prices, and in particular may omit the most important, bidder-optimal prices.

3. Assignment Preferences and Bid Tables
We now describe a new compact method for a bidder to write down bid information as
an alternative to assigning a price to every bundle explicitly (since this expression grows
exponentially in the number of items being auctioned). The approach for preference elici-
tation explored here makes use of the concept of a price-vector agent. Each agent can be
thought of as a fictional entity representing some portion of the preferences of a particular
bidder. A price-vector agent is assigned a vector of prices (a monetary amount for each of
the items in the auction) and “participates” in the auction based on these prices. An agent
receiving a particular item pays at most the price vector component associated with that
item. Throughout, we assume that each price-vector agent is a unit-demand agent, receiving
at most one item. This clarifies the role of the price-vector agent in economic terms: each
agent treats all items as perfect substitutes, meaning that only one of them provides any
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value to that agent. Similarly, bid tables allow for expression of partial substitutability, in
which the incremental value of additional items diminishes as more items are received.
Suppose that, each bidder j has a set of Aj agents that she potentially wishes to satisfy,

denoted by the set Kj = {1,2, . . . k, . . .Aj}. Let vijk denote the utility perceived by bidder j
when agent k receives item i. The preference assumption on vj(x) which we refer to as
assignment preferences is specified as follows:

vj(x) =max
∑
i∈I

∑
k∈Kj

vijkyijk (AP)

subject to
∑

i:xi≥1

yijk ≤ 1, ∀k ∈Kj ,

∑
k∈Kj

yijk ≤ xi, ∀ i∈ I,

where yijk =

{
1 if item i is assigned to bidder j’s kth agent,
0 otherwise.

In short, a bidder’s value for a bundle of items is a maximal value assignment of those items
to her agents. As is well known (see Nemhauser and Wolsey [21, p. 544]), the constraint
matrix of this integer program is totally unimodular, indicating that the problem can be
solved to integral optimality by its LP relaxation. This implies that a bidder could rapidly
determine her value for any set of items with an LP solver or faster combinatorial algorithm
designed specifically to solve assignment problems, even for a large value of N .
We call the collected set of (column) price-vectors a bid table. The result is an easy-to-

read method of compactly annotating certain forms of preferences for substitute goods. To
interpret a bid table, one need only keep in mind that at most one bid entry may be accepted
from each row, and at most one from each column.
As an example, with the bid table of Figure 1 we may determine a bidder’s value for

any bundle of items a, b, c, or d if assigned to any of three possible agents. Considering
the values in this bid table, we notice that a bidder’s value for any single item is simply
the maximum value for that row in the bid table; if a bidder is awarded only one item, the
agent that experiences the most utility from this item will be accommodated. Thus item a
by itself is worth 2 units to the bidder, item b by itself is worth 5 units, item c by itself is
worth 6 units, and item d by itself is worth 3 units. The value for some collection of items is
not, however, necessarily equal to the sum of her values for individual items, as there may
be conflicts when the row maximums occur in the same column. For example, for bidder j
with this bid table bj{b}= 5, bj{c}= 6 but bj{b, c}= 9 �= 5+ 6. We find bj{a, b, c, d}= 11
with an optimal assignment of a to the third agent, b to the second agent, and c to the
first agent. We notice that to achieve this amount we do not assign item c to the second
agent, despite this being the overall highest value in the bid table, and also that we choose
to assign item a and not item d, despite the fact that bj{a}< bj{d}.

Figure 1. A bid table.

Agent 1 Agent 2 Agent 3

Item a 0 0 2
Item b 2 5 3
Item c 4 6 4
Item d 0 3 0

Notes. Each entry is a dollar amount offered for the good in the row. At most one entry can be accepted
from each row, and at most one from each column.
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Figure 2. This bidder therefore only offers a positive amount for one item from the set
{A1,A2,A3}, and offers incrementally less for items {B1,B2,B3} as more of them are taken together.

Agent 1 Agent 2 Agent 3 Agent 4

Pure substitute A1 15 0 0 0
Pure substitute A2 16 0 0 0
Pure substitute A3 17 0 0 0
Partial substitute B1 0 23 18 12
Partial substitute B2 0 20 16 10
Partial substitute B3 0 19 15 9

These observations show that assignment preference valuation functions can have some
nonintuitive properties and are not contained in the class of additive valuation functions (in
which the value of some set of items always equals the sum of the values for the individual
items). We notice that any additive valuation function can be modeled by a bid table by
taking constant rows and at least as many agents as there are items. Thus additive valuation
functions are properly contained in the class of assignment preference valuation functions.
Figure 2 shows an example of a bid table and demonstrates how a single agent can be

used to name prices for pure substitutes, or how a collection of agents can combine to yield
decreasing offers on partially substitutable items. We see therefore that in the example of
Figure 2 that items A1, A2, and A3 are indeed pure substitutes, because at most one can
be purchased at a positive price. Similarly, if the bidder of this example receives item B1
priced at 23, she cannot also receive (for example) item B2 at a price of 20. If item B2 is
assigned to the bidder, the revenue maximizing auctioneer would be forced to accept a lower
price from another agent of that bidder. In this case the auctioneer would collect 16 for B2
rather than 20, verifying the partial substitutability; B2 is worth less if taken with B1.
The role of each column or price vector agent varies from application to application, but in

some scenarios the agents may have a very natural interpretation. Motivated by the proposed
use of a combinatorial auction for the allocation of airport landing slots (see Ball et al. [5]),
it may be useful to think of each agent as representing a potential flight, for example, and
each item as a slot made available to an airline at an airport for landing a single plane. In
this case, unit-demand agents representing each airplane should seem natural since each is
interested in consuming at most one slot to land the plane.
As another example, consider an auto-trader bidding for used cars who wants to obtain

at most one SUV and one sedan, but has varying preferences over colors. Suppose he likes
black cars more than white ones, and white ones more than red ones. This auto-trader’s
preferences may look like those given in Figure 3. By using separate agents for his SUV and
sedan preferences he can assure that he doesn’t get more than one of either. This example
also motivates a real world interpretation of assignment preferences, in which a real auto-
trader might send out two different agents to an actual auction, each with different interests
in mind to achieve a combined goal.

Figure 3. A bid table for used cars, entries in $1,000s.
SUV agent Sedan agent

Black SUV 22 0
White SUV 20 0
Red SUV 17 0
Black sedan 0 13
White sedan 0 10
Red sedan 0 9

Note. This bidder is interested in at most one SUV and at most one sedan, but has varying bids based
on color.
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4. Assignment Preferences and the Gross Substitutes Property
One may next ask how assignment preferences relate to the larger class of valuation functions
which satisfy the gross substitutes property (as discussed in Kelso and Crawford [17] for
example).

Definition 2. The gross substitutes property holds if and only if the following condition
holds for every bidder j: For any price vectors p′ ≥ p with p′ �= p, and any x∈Dj(p), there
exists an alternative x′ ∈Dj(p′) with x′

i ≥ xi for all i with p′
i = pi.

Or roughly, if the prices rise on some of the items in a demanded set, then there is at least
one demanded bundle at the new prices still containing all previously demanded items for
which the price did not increase.
The gross substitutes property is sufficient to guarantee the convergence of several ascend-

ing price multi-item auction formats to a Walrasian equilibrium (e.g., those of Ausubel and
Milgrom [3], Gul and Stachetti [15]) and has other beneficial properties which will be dis-
cussed below. Though it is a common assumption due to its attractive theoretical properties,
it is uncommon for theorists to describe applications which give rise to this property, to
explain under what conditions it is a safe assumption to make, or to suggest how to enforce
this restriction among bidders if it is necessary for the convergence of an auction to a desir-
able outcome. In this paper, we start instead from the assumption of assignment preferences
and show that the gross substitutes property follows as a result.

Theorem 1. A valuation function determined by assignment preferences displays the gross
substitutes property.

Proof. Suppose we begin at price vector p1 with a particular demanded bundle x∗ ∈Dj(p1)
and consider price vector p2 ≥ p1, with p2 �= p1 and a particular demanded bundle x′ ∈
Dj(p2). Under assignment preferences a demanded set is always supported by an assignment
of items to agents which maximizes total value net of prices (sometimes more than one
supporting assignment may exist). Begin by selecting particular assignments (sets of arcs to
item agent pairs) A∗ and A′ supporting x∗ and x′, respectively. We will say that arc i → k
is in A if assignment A has item i assigned to agent k.
Now, given an element ı̄ with x∗

ı̄ ≥ 1 with p1
ı̄ = p2

ı̄ and x′
ı̄ < x∗

ı̄ , we show how to find a
demanded bundle x∗∗ ∈Dj(p2) with x∗∗

ı̄ ≥ x∗
ı̄ and corresponding assignment A

∗∗. We do this
by showing how to construct two sets IN and OUT such that A∗∗ = (A′\OUT )∪ IN .
Algorithm 1 (Constructing a x∗∗ ∈Dj(p2) containing at least as much of ı̄).

Step 0. Set InItem = ı̄, OutItem = IN =OUT =∅.
Step 1. Let k be an agent assigned InItem under A∗.
Step 2. Find an item (or ∅) OutItem with OutItem → k in A′.
Step 3. Add arc OutItem → k (or ∅) to OUT . Add arc InItem → k to IN .
Step 4. If OutItem /∈ x∗ (or OutItem =∅), terminate, else set InItem =OutItem and goto

Step 1.
Terminate: Set A∗∗ = (A′\OUT )∪ IN .

Claim 1. The bundle x∗∗ implied by arc set A∗∗ is in Dj(p2). Suppose not. Then x′ ∈
Dj(p2) provides uj(x∗∗,p2)< uj(x′,p2). Since by construction each member of OUT was
in A′, this yields uj(IN ,p2)< uj(OUT ,p2), with the obvious interpretation of the utility
for an arc set. That is

uj(IN ,p2) =
∑

i→k∈IN
vijk −

∑
i | i→k∈IN

p2
i <uj(OUT ,p2) =

∑
i→k∈OUT

vijk −
∑

i | i→k∈OUT
p2

i .

But because every item assigned under IN is assigned under OUT , except for ı̄ which does
not experience a price change from p1 to p2, we have uj(IN ,p1) < uj(OUT ,p1). But by
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construction of these arc sets (A∗\IN )∪OUT is a feasible assignment, and then we must
have uj(A∗,p1)<uj((A∗\IN )∪OUT ,p1), contradicting our choice of x∗ ∈Dj(p1).

The validity of the claim provides a demanded set containing ı̄. Each execution of the
algorithm finds a set in x∗∗ ∈Dj(p2) containing an element from x∗ that was missing in x′

and does not remove any elements from x∗ ∩x′. By repeating this procedure (setting x′ = x∗∗

each time) we arrive at a set in Dj(p2) containing all the desired elements of x∗. �

To illustrate the idea of the proof consider the following example in which the items in
the auction are denoted by lowercase letters. Suppose at prices p1 the bidder in question
demands the bundle {a, b × 2, c, d, e, f}, (where b × 2 indicate two copies of item b in the
bundle) which is found to maximize utility with the assignment of items to agents A∗ =
{a→ 1, b→ 2, c→ 3, d→ 4, de→ 5, f → 6, b→ 7}. Suppose next that prices rise on items a
and d. The bidder then recomputes for an optimal bundle at these prices and finds the
optimal assignment A′ = {h → 1, r → 2, g → 3, q → 4, b → 5, d → 6, c → 7}, but this
assignment clearly does not validate the gross substitutes property; items e and f did not
experience a price increase but they do not appear in the newly demanded bundle, while
item b did not experience a price increase but had a reduction in demand from 2 to 1.
To apply the algorithm described in the proof, first consider finding a demanded set

including two copies of item b. Putting A∗ above A′ and designating destination agents by
column, we see below that agent 2 who was assigned b in A∗ is assigned r in A′.

A∗ : a b c d e f b
↓

A′ : h r g q b d c
— — — — — — — — —
A∗∗ : h b g q b d c

The manipulation performed by the algorithm is in its simplest form here. The value
of A∗∗ at p2 must be at least as much as the value of A′ at p2, or else it would be possible to
switch r in for b in A∗ and receive a higher value at p1, contradicting the optimality of A∗

as a demanded bundle. This reasoning only holds because the price of b does not change in
the movement from p1 to p2, and because r can be switched in freely as it is not in A∗.
When we try to find a demanded bundle at p2 containing e, it is not quite so easy; the

agent assigned e under A∗ is assigned b under A′, and since b is already assigned under A∗

a one-for-one switching argument fails. The algorithm rectifies this by tracing back a path
until an item is found that was not allocated under A∗. For example, the following diagram
helps us see that in moving from A∗ to A′ (which has now been replaced by A∗∗ from
the previous step) item e’s agent is reassigned item b, whose agent in A∗ is reassigned
item c, whose agent in A∗ is reassigned by item g which was unallocated in A∗. (Note that
if we picked agent 2 for item b rather than agent 7, we simply add one more trivial step
before finding the item g unallocated in A∗.) The same optimality argument can be used to
show a demanded bundle at p2 including item e; {g → 3, b → 5, c → 7} can be replaced by
{c→ 3, e→ 5, b→ 7} or else the optimality of A∗ is contradicted.

A∗ : a b c d e f b
↓ ↓ ↓

A′ : h b g q b d c
— — — — — — — — —
A∗∗ : h b c q e d b
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Figure 4. Preferences that do not fit in a bid table.

v{a}= 10, v{a, b}= 20
v{b}= 12, v{a, c}= 19
v{c}= 13, v{b, c}= 17

a 10 8?
b 12 10?
c 13

Note. The value v{a, b}= 20 requires either an 8 or 10 to be inserted as shown, but either attempt results
in the over-valuation of another bundle.

Arguing similarly allows us to settle on a final set A∗∗, demanding all items for which prices
did not increase with at least the same levels as at price p1. The final step is displayed in
the following diagram.

A∗ : a b c d e f b

↓ ↓
A′ : h b c q e d b

— — — — — — — — —

A∗∗ : h b c d e f b

Lehmann et al. [18] independently showed that the OR-of-XOR of singletons language
satisfies the gross substitutes property. This logically constructed language turns out to be
equivalent to assignment preferences, thus providing an indirect way of stating our result.
Further, concurrently to the Ph.D. dissertation of Day [10] which includes portions of this
paper, Hatfield and Milgrom [16] made a similar connection between assignment preferences
and gross substitutes.
In contrast to these alternative proof techniques, our proof of the gross substitutes prop-

erty is constructive and thus useful in its own right algorithmically. Experience shows that us
that using an LP solver to determine demanded bundles under assignment preferences may
give any demanded bundle after a price increase and will often not provide a bundle that
verifies the validity of the theorem. For any demanded bundle x∗ before a price increase and
a given demanded bundle x′ after the price increase, the algorithm described in the proof
constructs a new demanded bundle x∗∗ after the increase, demanding (at least the same
level) all previously demanded items in x∗ for which the price has not risen. This is useful,
for example, if the auction is demanding a price path that upholds the gross substitutes
property throughout.
Theorem 1 assures us that the gross substitutes property holds when bidders are restricted

to the use of bid tables only, as in Stage I of the auction proposed in Day and Raghavan [11],
or any isolated bid table auction implementation. To complete the characterization of assign-
ment preferences with respect to the gross substitutes property, we note that the valuation
function of Figure 4 maintains the gross substitutes property but cannot be expressed as
an assignment preference valuation function. The gross substitutes property follows from
the submodularity and positivity of the valuation function. To see that these preferences
cannot be expressed as an assignment preference valuation function (or equivalently, as a
bid table) notice that the value of any two items is less than the sum of the values for the
individual items, thus the values for the individual items must all occur in the same column
of a bid table. But now if we attempt to put in a value of 8 into column 2, row a, or a value
of 10 into column 2 row b to express v{a, b}= 20, we either overvalue the bundle {a, c} at
21 or the bundle {b, c} at 23. There is therefore no way to express these gross substitute
preferences as assignment preferences.



Day and Raghavan: Assignment Preferences and Combinatorial Auctions
60 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure 5. A bid table auction for which VCG payments are lower than in any Walrasian
equilibrium.

Bidder X Bidder Y Bidder Z
A 8 0 0 0
B 8 0 0 0
C 0 8 0 0
D 0 8 0 0

A 6 0 0 0
B 0 6 0 0
C 2 0 0 0
D 0 0 0 0

A 0 0 0 0
B 2 0 0 0
C 0 6 0 0
D 6 0 0 0

With Theorem 1 and earlier observations we have the following corollary, where Vadd, VAP,
and Vsub denote the classes of valuation functions that have additive preferences, assignment
preferences, and gross substitute preferences, respectively.

Corollary 1. Vadd ⊂ VAP ⊂ Vsub.

Though all containments in Corollary 1 are proper, we note that assignment preferences do
retain some of the interesting properties lost between Vsub and Vadd. Notably, we can embed
in a bid table auction an example from Gul and Stachetti [15] that demonstrates the VCG
outcome (in which truthful bidding is a weakly dominant strategy for all bidders) may have
lower payments than the lowest Walrasian Equilibrium. This embedding is shown in Figure 5,
providing an example of a bid table auction for which the VCG payments are strictly less
than any Walrasian Equilibrium. In one efficient allocation, bidder X gets {A,D}, bidder
Y gets {B} and bidder Z gets {C}, with VCG payments of 12, 2, and 2, respectively. The
lowest Walrasian equilibrium price vector is however, pA = pB = pC = pD = 6, charging more
to bidders Y and Z than in any VCG outcome. Having established that the VCG outcomes
and the lowest Walrasian equilibrium may differ in a bid table auction, we next discuss bid
table auctions which achieve each of these outcomes in §§5 and 6, respectively.
Before going on to discuss some nice properties that can be inferred from Theorem 1,

however, we first note the extreme limitations on preference expression implied by the the-
orem’s result that VAP ⊂ Vsub. In particular, the gross substitutes property implies the “no
complementarities” condition as described by Gul and Stachetti [14]. This condition forbids
any expression of super-additive valuation; for example, a bidder may not require a mini-
mum number of items (other than one) for a bundle to have positive value, or further, if an
individual item is added to any bundle it cannot increase the value of the resulting bundle
by more than its value if taken individually.

5. VCG Bid Table Auction Implementations
In the sealed-bid Vickrey-Clarke-Groves (VCG) auction (see Clarke [7], Groves [13],
Vickrey [25]) each bidder submits her true valuation for every possible bundle of items. A
winning allocation is then determined which distributes bundles to bidders so as to max-
imize total value. To assure that each bidder has the incentive to reveal her total value
honestly, she pays not her reported value for the bundle she receives, but this value less
an appropriate discount. This VCG discount assures that a bidder does not pay any more
than would be necessary to receive this bundle given her opponents honest reports, and is
equal to the value of the final allocation minus the maximum value attainable without this
bidder. A bidder only decreases her chances of receiving her efficient allocation of items by
misreporting, with no possible gain.
The assurance of honest valuation reporting is well known to be the strength of the VCG

auction, but as Ausubel and Milgrom [3] point out, there are several drawbacks. Shill bid-
ding occurs when a bidder enters a false identity into the auction in a way that results in an
inefficient allocation or alternative set of payments which is preferred by the deceitful bid-
der. Similarly, Ausubel and Milgrom demonstrate how two or more losing bidders in a VCG
auction may increase their bids to become winning without having to pay for this increase.
These difficulties with the VCG auction are explored in depth elsewhere, for example by
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Rothkopf et al. [24], but we note that these difficulties rely on the existence of complemen-
tary items, an impossibility when the gross substitutes condition holds. Theorem 2, stated
below, ensures that these problems of collusive behavior and revenue reduction sometimes
recognized as drawbacks to the VCG auction have no effect when the gross substitutes
property holds.

Theorem 2 (Ausubel and Milgrom [3]). In an auction where bidders have valuation
functions drawn from the set V such that Vadd ⊂ V , the following conditions are equivalent:
(1) V ⊂ Vsub.
(2) For every profile of bidder valuations drawn from V , adding bidders can never reduce

the seller’s total revenues in the VCG auction.
(3) For every profile of bidder valuations drawn from V , any shill bidding is unprofitable

in the VCG auction.
(4) For every profile of bidder valuations drawn from V , any joint deviation by losing

bidders is unprofitable in the VCG auction.

Since the hypotheses for Theorem 2 and condition (1) of Theorem 2 are satisfied according
to Corollary 1, we may conclude that the bid table auction scenario is one for which the
VCG auction attains its full strength. The advantages of the bid table auction scenario over
the general VCG auction context are that each bidder may simply submit a bid table to
express her preferences (a method that is far more compact than issuing a price for every
one of the 2N −1 possible nonempty bundles) and the winner-determination problem can be
solved polynomially using LP techniques. Both of these features are important for an auction
of many items. Again, we are motivated by the proposed auctions for airport landing slot
rights, and notice that at LaGuardia airport, for example, over 800 slots may be available
in a single day; an auction for these slots which enumerates all possible bundles would be
impossible.
In order to run a VCG bid table auction, one must compute both an efficient allocation and

the set of VCG payments for all bidders. To determine an efficient allocation, the auctioneer,
having received bid tables containing the submitted bids of bijk , needs to solve the LP:

zJ =max
∑

(i, j, k)∈I×J×Kj

bijkyijk (P)

subject to
∑
i∈I

yijk ≤ 1, ∀ (j, k) with j ∈ J and k ∈Kj ,

∑
j∈J

∑
k∈Kj

yijk ≤ supi, ∀ i∈ I,

yijk ≥ 0, ∀ i, j, k.

To determine VCG payments, the auctioneer can solve this problem again without bidder j
to find the appropriate discount for bidder j, zJ − zJ\j , where zJ\j denotes the value of the
objective value of P with bidder j removed. The assignment corresponding to zJ determines
a bundle xj with bid value bj(xj) for each bidder. Each bidder in the VCG auction receives
xj and pays bj(xj)− (zJ − zJ\j). For the entire auction at most M +1 LPs must be solved.
Since there are O(MN 2) variables and O(MN ) constraints in each LP, and because it is
well known that LPs can be solved in polynomial time (as a function of the number of
constraints and variables), we conclude that the VCG bid table auction can be solved in
polynomial time.

6. Dynamic Bid Table Auctions
Though Theorem 1 allows the application of Theorem 2, implying that because of the
gross substitutes property the bid table auction is a good preference format for a VCG
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implementation, it also limits the types of possible applications of the bid table auction to
those in which there is no complementarity among items. It is possible however to use bid
tables in the preliminary (revelation) stages of a hybrid auction concluding with a sealed-bid
auction. Theorem 2 and the accompanying discussion by Ausubel and Milgrom [3] make a
clear case against the use of the VCG mechanism when complementarities are possible.
Ignoring for now the issue of complements (i.e., maintaining the assumption that bidders

have assignment preferences), it seems that the primary drawbacks to the VCG bid table
auction are the lack of price discovery (i.e., the transmission of signals to inform bidders
of market competition, perhaps affecting their valuations) and privacy preservation (i.e.,
bidders may not want their preferences to be publicly known). Though privacy preservation
may in principle be legally enforced, lack of price discovery may be an inherent concern
and discourages the use of a sealed-bid VCG bid table auction. A bidder may not know
how to fill out a bid table with honest valuations for agent/item pairs without knowing her
opponents’ values for various items, and would prefer a dynamic auction to learn about her
competition. (This is analogous to the well-known disparity between the English auction
and the sealed-bid second-price auction for a single item, in which bidders may prefer the
dynamic English auction which allows for price discovery.)
Towards the goal of implementing a dynamic auction for the landing-slot application, we

examine the LP dual to P:

min
∑
i∈I

supi pi+
∑
j∈J

∑
k∈Kj

sjk (D)

subject to pi+ sjk ≥ bijk , ∀ i, j, k, (7)

pi ≥ 0, ∀ i∈ I,

sjk ≥ 0, ∀ j ∈ J, k ∈Kj . (8)

Problem P has integer optimal solutions (by total unimodularity), and an optimal solution
to problem D will have the same objective value. This dual formulation suggests a set of
“supporting prices” pi for each item. If we stipulate that a bidder receiving item i in an
optimal solution of P pays pi, the value of sjk becomes the surplus perceived by bidder j’s
agent k (abbreviated (j, k)).
The complementary slackness conditions for the primal dual pair P–D are:

∀ i, j, k yijk > 0 ⇒ pi+ sjk = bijk and pi+ sjk > bijk ⇒ yijk = 0; (9)

∀ j, k
∑
i∈I

yijk < 1 ⇒ sjk = 0 and sjk > 0 ⇒ ∃i such that yijk = 1; (10)

∀ i∈ I
∑
j∈J

∑
k∈Kj

yijk < supi ⇒ pi = 0 and pi > 0 ⇒
∑
j∈J

∑
k∈Kj

yijk = supi . (11)

Each of these conditions (presented in equivalent pairs) carries an economic interpretation
reinforcing the validity of the model. If agent (j, k) is awarded item i, condition (9) implies
pi + sjk = bijk , validating our reference to sjk as surplus. If an agent is not awarded an
item in an optimal solution, by condition (10) we have sjk = 0, and then the constraints (7)
become pi ≥ bijk, ∀ i∈ I; if an agent is empty-handed at optimality, the optimal dual prices
make any item too expensive for this agent to buy. Similarly, the second statement of (10)
says that if agent (j, k) perceives any surplus, then it must be the case that (j, k) received
an item. Further, if we evaluate the potential surplus that item i would bring to agent (j, k)
who receives a different item at optimality, we find sjk ≥ bijk − pi; the price of i is great
enough that a change from the item awarded at optimality to i for agent (j, k) does not
increase surplus. The last pair of conditions, (11), state simply that an item will have a
nonzero price only if all copies of the item are awarded at optimality.
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Theorem 3. Assuming truthful demand reporting and assignment preferences, the alloca-
tion (x1,x2, . . .xj . . .xM ) given by an optimal solution to P together with prices for items
p= (p1, p2, . . . pi . . . pN ) given by the corresponding dual solution to D constitutes a Walrasian
equilibrium.

Proof. Suppose not. There is some bidder j and some bundle x̄j with j strictly preferring x̄j

to xj . Equivalently,
bj(x̄j)−

∑
i∈I

x̄j
ipi > bj(xj)−

∑
i∈I

xj
ipi,

where bj(xj) and bj(x̄j) are supported by agent sets K and K, respectively. Complementary
slackness conditions (9) provide bijk − pi = sjk for each item i assigned to j in xj , yield-
ing bj(xj) − ∑

i∈I x
j
ipi =

∑
k∈K sjk. Similarly, constraints (7) yield

∑
k∈K sjk ≥ bj(x̄j) −∑

i∈I x̄
j
ipi. Together this implies ∑

k∈K

sjk >
∑
k∈K

sjk,

but with sjk = 0 in the optimal solution of D for any agent k /∈K, and sjk ≥ 0 for all agents,
we have ∑

k∈K∩K

sjk >
∑
k∈K

sjk,

a contradiction. �
The existence of a Walrasian equilibrium under the gross substitutes property is estab-

lished by Kelso and Crawford [17]. Among all Walrasian equilibria there exists one that is
bidder-optimal, the lowest Walrasian equilibrium. The uniqueness of this bidder-optimal
Walrasian equilibrium when the gross substitutes property holds follows naturally from the
work of Gul and Stachetti [14], who demonstrate the lattice structure of Walrasian equilibria
under gross substitutes. In our case, this existence and uniqueness is guaranteed because the
gross substitutes property holds by Theorem 1. This vector of lowest Walrasian equilibrium
prices constitute what one might refer to as “good” linear prices, and their existence in the
case of bid tables verifies our claim that this is a case for which linear prices make sense. It
is known from the work of Demange et al. [12] that versions of the “Hungarian algorithm”
(a primal/dual method for solving assignment problems) yield this lowest Walrasian equilib-
rium in the special case that Aj = 1, ∀ j, and supi = 1, ∀ i. We now discuss the generalization
to the case of arbitrary integer values for Aj and supi.
As in Demange et al. [12], the Hungarian algorithm finds an efficient allocation in a

bid table auction and the prices used in its solution provide an optimal solution to the
dual problem D, together forming a Walrasian equilibrium, from Theorem 3. (To apply the
Hungarian Algorithm directly, it is necessary to give unique names to each identical copy
of an item). In general, however, this method produces Walrasian prices that are greater
than or equal to the actual lowest Walrasian equilibrium prices for a bid table auction. This
is because according to formulation D alone, the price a bidder pays may be determined
by one of her own agents, as if her own agents must price-compete among themselves. For
example, if the formulation D were used to find prices for the bid table auction represented
in Figure 6 (where there is a supply of one for each of two items), the first item would be
priced at 3 and the second at 1. The lowest Walrasian Equilibrium prices for this example

Figure 6. Self-competition among one’s own agents.

Bidder X Bidder Y
A 3 3
B 1 1

A 2 0
B 2 0
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are (1,1), however; competition between Bidder X’s two agents have drawn up the prices
unnecessarily.
To avoid this self-competition problem when finding the lowest Walrasian equilibrium,

we introduce the following Dual Pricing Problem DPP. This formulation specifies an
LP-characterization of the minimal Walrasian equilibrium prices for a bid table auction.
Specifically, given a solution to the primal problem P above with objective value z and
allocation determined by optimal yijk values, we may fix the dual objective from D at its
optimal value in constraints (12) and maximize total surplus over all bidders.

max
∑
j∈J

∑
k∈Kj

sjk (DPP)

subject to z =
∑
i∈I

supi pi+
∑
j∈J

∑
k∈Kj

sjk, (12)

pi+ sjk = bijk, ∀ i, j, k with i→ j, k, (13)

sjk = 0, ∀ j, k with ∅ → j, k, (14)

pi+ sjk ≥ bijk, ∀ i, j, k with
∑

k∈Kj

yijk < supi, (15)

where we expand our use of the→ notation to express assignment under a specifically chosen
efficient solution to problem P; for example, i → j, k expresses that item i is awarded to
bidder j’s kth agent in the selected efficient allocation.
We note that the most important distinction between DPP and D comes in constraint

set (15) in which only constraints that do not involve self-competition are enforced. That is,
form the set of constraints (15) from constraint set (7) of formulation D by removing all
constraints pi + sjk ≥ bijk involving an item i and a bidder j winning all copies of i. This
approach is equivalent to resolving the primal allocation problem P and the dual problem D
with a Hungarian primal/dual method after lowering all nonwinning entries in a winning row
of a bid table to zero when bidder j wins all copies of i. We use the formulation DPP in the
following proof as it provides an interesting interpretation as a price adjustment procedure;
starting with an efficient allocation and the optimal solution of D, lower the prices on winning
bidders as long as no one complains, where any violated constraint from (15) is interpreted
as a complaint from another bidder. Knowing that prices may be easily and transparently
adjusted to a unique minimal Walrasian equilibrium is a primary benefit of Theorem 1 (gross
substitutes). This unique price vector may then be used in a multiround setting, using bid
table auctions as a mechanism of demand revelation with distinct meaningful price signals
at each round of submission. We now formally prove that we achieve these desirable price
signals.

Theorem 4. Given an optimal solution to the primal problem P with objective z, solving
DPP to maximize bidder surplus yields the lowest Walrasian equilibrium price vector p∗.

Proof. Begin with price vector p1 which is an optimal solution to D and therefore a Wal-
rasian equilibrium price by Theorem 3. Note that this optimal solution to D gives a feasible
solution to DPP with constraints (13) and (14) holding by the strong duality of P and D.
Lowering any component p1

i and raising all corresponding components s1
jk by the same

amount (where i is assigned to j, k in the solution to P) will have no effect on constraints
(12), (13), or (14).

Claim 2. If such a shift from price to surplus does not violate constraints (15) the resulting
price vector continues to support a Walrasian equilibrium. If not, some bidder j not assigned
all copies of item i (i.e., with

∑
k∈Kj

yijk < supi) will have an agent (j, k) not assigned i that
would prefer item i to whatever item the agent has currently been assigned (if any). This
implies that bijk − pi > sjk which would violate the corresponding constraint from (15).
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We therefore proceed to shift price to surplus until any possible shift causes a violation
of some constraint from (15), achieving a price vector p2.

Claim 3. p2 is the lowest Walrasian equilibrium price vector. Suppose not: let p3 �= p2 be
the lowest Walrasian price vector. From the lattice theory of Walrasian equilibria when the
gross substitutes condition holds (as established in Gul and Stachetti [14]) this Walrasian
Equilibrium price is unique, and for every component p3

i ≤ p2
i . Since p

3 �= p2 there must
be some i for which p3

i < p2
i . Since our price-to-surplus shifting procedure has terminated,

a shift from p2
i to p3

i must violate some constraint from (15), thus we have the following
inequality holding for some j, k with at least one copy of i not assigned to bidder j:

p3
i + sjk < bijk .

But now at price vector p3, bidder j who is allocated bundle xj prefers the alternative bun-
dle xj+ei, implying that p3 does not support a Walrasian equilibrium, a contradiction. �
Now that we have shown how the lowest Walrasian price vector will be computed at each

round, we propose the dynamic bid table auction proceeding in multiple rounds as follows.
Accept bid tables from all bidders and determine a winning allocation (solution to P) using
any technique. Adjust the prices as suggested in Theorem 4 to find an optimal solution to
DPP, and therefore the set of unique lowest Walrasian equilibrium prices. Announce winning
prices and allow bidders to adjust their bid tables subject to the following rules:

• Any bid in a nonwinning row of a bid table must be raised at least to the current price
for that item (row) plus one price increment, or else it may not be altered for the remainder
of the auction.

• A bidder who does not wish to increase an entry to the required amount may increase
it to a price below the current price plus one increment. This is the bidder’s “last-and-
best” offer.
The auction then continues by computing a new set of winning bids and prices, and the

process repeats until no one wishes to raise any bid table entries any further.
To show that this procedure progresses to a desirable equilibrium, assume that each bidder

perceives a set of maximum bid table values, vijk . We would expect to see these entries
from honest bidders in the direct revelation VCG as in §5, and now show that the dynamic
game converges to the same outcome as the direct revelation game, given an assumption
of straightforward bidding. Though this behavioral assumption is strong, there is evidence
in practice and from the relevant literature (especially from Ausubel et al. [4]) that an
appropriate bidding activity rule will encourage straightforward bidding behavior. (Ausubel
et al. [4] provide a concrete example of a practical activity rule. In general, an activity rule
reduces the eligibility of a bidder to bid in future rounds if she does not bid aggressively
enough in the present.)
For the dynamic bid table auction scenario, we will say that a bidder bids straightforwardly

if she increases a bid table bijk in a nonwinning row by the minimal increment whenever the
potential surplus vijk −pi for agent (j, k) is greater than the actual current surplus for agent
(j, k), s̄jk = vı̄jk −pı̄, where ı̄ is the item currently awarded to agent (j, k). Here the modifier
actual and “bar” over the s emphasize that this is the actual surplus as perceived by the
bidder, not the apparent surplus which may be computed using her revealed information:
sjk = bı̄jk − pı̄. In either case, this surplus will be zero if no item is awarded to agent k. We
also assume that if a straightforward bidder is asked to raise a bid table value above vijk ,
then she will raise it to vijk , reporting her true valuation as she loses eligibility to alter the
entry further.

Theorem 5. A dynamic bid table auction with straightforward bidders (A) terminates at
an efficient equilibrium of the direct revelation bid table auction, and (B) achieves the unique
lowest Walrasian equilibrium prices.



Day and Raghavan: Assignment Preferences and Combinatorial Auctions
66 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Proof of Part A. First, we show that the allocation at termination is an efficient outcome
of the direct revelation game. Suppose not. Let A be the allocation at termination of the
dynamic auction with current bid table values bijk. By supposition there is an allocation Ā
such that ∑

Ā

yijkvijk >
∑
A

yijkvijk (16)

where the summation over an allocation signifies summation over all i, j, k with values of yijk
given by that allocation. Because we have assumed that bidders bid straightforwardly and
that the dynamic auction has terminated, for any bid table column j, k which is allocated
item i under allocation A and ı̄ under Ā, it must be the case that vı̄jk −pı̄ ≤ vijk −pi (if not
the straightforward bidder would want to continue bidding on ı̄). This inequality also holds
(reflexively) for any agent j, k that is awarded the same item under both allocation A and Ā.
For any j, k allocated item ı̄ under Ā which is not allocated an item under A, this condition
becomes vı̄jk − pı̄ ≤ 0. Finally, by individual rationality we also have that 0≤ vijk − pi for
any i allocated to j, k under A (particularly we take this inequality for any columns j, k
which are for agents receiving items in both allocations, allocated items under A but not
under Ā). We then sum these three sets of inequalities, selecting (and multiplying by yijk )
the appropriate one for each agent j, k who receives items in either allocation A or Ā, or
both, yielding: ∑

Ā

yijk (vijk − pi)≤
∑
A

yijk (vijk − pi)

∑
Ā

yijkvijk ≤
∑
A

yijkvijk , (17)

with the second inequality following since each item is allocated exactly once in each allo-
cation, allowing us to cancel the sum of all pis from each side. But (17) contradicts (16),
with the desired result following.

Proof of Part B. Next we show that the prices at termination of the dynamic schedule auction
are the lowest Walrasian equilibrium prices for the direct revelation schedule auction. Using
Theorem 4, this is equivalent to showing that the solution to the pricing problem DPP using
the value z̄ (computed using values from vijk ) has equal values for all pi to the solution of
DPP using value z (computed using bijk ).
Given that the optimal allocation is unchanged by increasing all bijk values to their reser-

vation point vijk from Part A, increase all bijk values to vijk and simultaneously increase
every surplus sjk by the same amount wherever i is allocated to j, k. We claim that this
provides a solution to DPP using value z̄ with identical values of all pi, as desired. Clearly,
the simultaneous shift of sjk values with bijk values upholds DPP constraints (12) and (13).
Constraints (14) are upheld since sjk only changes for columns which win items, while a
violation of a constraint from (15) would imply a violation of a termination condition. Since
none of the constraints of DPP are violated, our new solution must be feasible to DPP. Since
any increase of the DPP objective function must be accompanied by an equivalent increase
to the primal objective z, and because we have achieved all such increase as surplus, we may
be assured that our new objective function is optimal. Since no pi values have changed we
have the same lowest Walrasian equilibrium price vector at the termination of the dynamic
bid table auction and in the direct revelation bid table auction, as desired.
Part B of this proof demonstrates the desirable privacy-preservation property of the

dynamic bid table auction relative to the static revelation version: the actual surplus each
bidder perceives need not be revealed in the dynamic case, only that surplus is at least one
increment. By making the bid increment smaller we may in this way approach maximal
privacy-preservation. �
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The results of this section hold under the assumption that each bidder’s preferences are
modeled accurately in bid tables, an assumption which we have shown to be more restrictive
than the gross substitutes property. Recent trends in auction design suggest that the use
of auctions which work well under the gross substitutes property (e.g., those of Gul and
Stachetti [15], Ausubel [2]) may be used to reveal information necessary for bidders to make
decisions in an auction allowing for more general expression of preferences, those for which
gross substitutes does not hold. At the end of a dynamic bid table auction, each bidder
should be comfortable that he has bid enough on individual items without being exposed
to the risk of paying too much for substitute items. Then, the auction may proceed to a
subsequent phase in which a bidder submits combinatorial bids on bundles for which her
valuation is greater than the sum of the individual item prices. For a further discussion of
a multistage combinatorial auction with the dynamic bid table auction as a first step see
Day and Raghavan [11].
To understand this idea in a bit more detail within the current context, imagine a bid-

der participating in a dynamic bid table auction that will be followed by a more general
expression of preferences in the later stage(s) of a hybrid auction. This bidder may select
bijk values for her bid table such that any feasible solution to (AP) for a particular bun-
dle x will be less than or equal to her desired bid on the bundle bj(x). Then the solution to
(AP), which we can call bAP

j (x), will be a lower bound on bj(x) for any x. When all bidders
use this technique of bid table expression to communicate lower bounds on bundle values,
the resulting dual constraints of the form given by (15) can be added appropriately to get∑

i∈I xipi+
∑

sjk ≥ bAP
j (x), ∀ j ∈ J , ∀x ∈ S. Comparing to constraints of the form (4), we

note that sj −∑
sjk = bj(x)−bAP

j (x) and thus the dynamic bid table auction results in equi-
librium prices of the form described by problem (WDP–D), but based on lower-bound bids
on each bundle rather than actual (eventual) bids, with the difference between a bundle’s
actual value and its lower bound hidden as additional, unobservable surplus. The goal of
the next phase of any hybrid auction would be to extract additional information about this
yet unobserved surplus to increase auction efficiency. The tighter the lower bounds provided
by the selection of bijk values, the better the approximation of the actual efficient solution
obtained by this approximation in a polynomially computable phase.
Now, comparing the ability of the SAA to perform the same goal in a hybrid auction, we

see that the final prices in a SAA can be modeled as those of a bid table auction with the
restriction than only bid table entries on the diagonal may be positive. Thus with a smaller
space of possible bijk entries, the lower bounds on bundle values provided by SAA must
be inferior to those provided by a general dynamic bid table auction. Further, actual SAA
implementations allow the current winner to set the current price on an item in intermediate
rounds, allowing for collusive signaling as observed by Cramton and Schwartz [8]. But since
the current winning bidder of an item in a dynamic bid table auction does not set the price
observed by competitors, this form of collusive behavior is impossible in a dynamic bid table
auction.

7. Conclusions
This paper focuses primarily on a special case of a combinatorial auction for which the size
of communication grows polynomially in the number of items being auctioned, and for which
the winner-determination problem can be solved in time polynomial in the size of this com-
municated input. Implicitly, we ask: how can a simple compact representation of preferences
(price-vectors) be combined to form more elaborate statements of preference? This ques-
tion follows somewhat naturally from the economics literature of Kelso and Crawford [17],
who introduce unit-demand bidders, each with preferences described by a price-vector, in
a model of the job-market, in which an employee can accept at most one job. Kelso and
Crawford also introduce the gross substitutes property, which has become fundamental in
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the study of auctions. The strength of this concept in categorizing preferences and guar-
anteeing the existence of a unique Walrasian linear-price equilibrium has influenced several
authors, including Ausubel and Milgrom [3] and Gul and Stachetti [15], all of whom provide
foundational work for the research presented here.
Other results on unit-demand bidders are given by Demange et al. [12], leading naturally

into our own investigation of bid tables. Indeed, the case of unit-demand bidders is well
studied, and we note that the current paper generalizes the Walrasian equilibrium results
of Demange et al. [12] (as presented, for example, by Roth and Sotomayor [23]), from the
case of unit-demand bidders to the case in which each bidder is represented by multiple
unit-demand agents.
Representing bidders by multiple unit-demand agents results in the fairly natural and

easy-to-read bid table format, causing us to wonder, why hasn’t this been investigated
before? We note that among the incentive properties of their unit-demand bidder auction
model, Roth and Sotomayor [23] show that a bidder cannot benefit from shill bidding (hav-
ing someone else join the auction to distort its outcome). This may seem to imply that
representing a bidder by multiple unit-demand agents would be unrewarding, but the model
under which this property was proven maintains the assumption of a unit-demand valuation
function for each bidder. We, on the other hand, find use for the bid table format (i.e.,
assignment preferences) within the more general context of multiunit demand.
How general is the preference expression afforded by the bid table format in the mul-

tiunit demand context? We have provided a powerful characterization: assignment pref-
erences (those which can be written in bid tables) are properly contained in the class of
gross substitutes valuation functions. Applying a result of Gul and Stachetti [14] based on
this characterization, the gross substitutes property elucidates the greatest strength of a
bid table auction: unique lowest Walrasian equilibrium price signals can be computed at
each round of submission. The computation of these attractive linear price signals is facili-
tated by our constrained optimization approach, which allows us to recognize and neutralize
“self-competition” constraints. This new approach overcomes the failure of the Hungarian
algorithm to provide the truly lowest Walrasian equilibrium prices in this context, as it does
in the unit-demand bidder context.
While the gross substitutes property does indeed provide several strengths of the bid table

environment, it also clearly exposes its weaknesses. Most notably, preferences for comple-
mentary bundles cannot be expressed in bid tables alone. We therefore demonstrated the
efficacy of a dynamic bid table auction which can be used as the first stage of a hybrid
auction procedure, capturing substitutable preferences in bid tables and deferring to a later
package auction phase for complementary expression. Further details on the design of such
a hybrid auction are given in Day and Raghavan [11], but with the current work we have
established much of the foundational theory for that design, allowing us to implement a
better revelation phase for a combinatorial hybrid auction. These results have included algo-
rithms for computing better linear price signals, and for upholding the gross substitutes
property in a strict sense, where earlier and more general algorithms fail to do so.
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