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Abstract A streaming statistical algorithm detects SSH client keystroke packets in a TCP con-
nection on any port. Input data are timestamps and TCP-IP header fields of packets
in both directions, measured at a monitor on the path between the hosts. No packet
content is included. The algorithm uses the packet dynamics just preceding and fol-
lowing a client packet with data to classify the packet as a keystroke or nonkeystroke.
The dynamics are described by classification variables derived from the arrival time-
stamps and the packet data sizes, sequence numbers, acknowledgement numbers, and
flags. The algorithm succeeds because a keystroke creates an identifiable dynamical
pattern. Final testing of the algorithm is based on analysis of about 1 million connec-
tions covering all common network protocols. Data visualization and the statistical
design of experiments play a critical role in the analysis. It is common to treat the
choice of tuning parameters of a statistical or machine learning algorithm as an opti-
mization that finds one set of parameter values. Instead, we run a designed experiment
that treats the tuning parameters as statistical tuning factors, which yields valuable
information about algorithm performance. One application of the algorithm is iden-
tification of any TCP connection as an SSH interactive session, allowing detection of
backdoor SSH servers. More generally, the algorithm demonstrates the potential for
the use of detailed packet dynamics to classify connections, important for network
security. The algorithm has been implemented in the widely used Argus traffic audit
software system.

Keywords network security; statistics; interactive SSH session; Argus network traffic auditor;
backdoor login; design of experiments; data visualization

1. Introduction
The Secure Shell (SSH) protocol (Ylonen and Lonvick [15]) is a widely used, encrypted,
method for Internet communication. Initially developed to replace the unencrypted Telnet
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protocol, SSH provides not only interactive command-line access, but also file transfer via
SCP and SFTP and a general tunneling mechanism which can be used to forward arbitrary
application traffic such as X11. Because of its popularity, SSH servers, which usually run
on port 22, are subject to intense attacks to gain SSH login authorization. In addition,
an intruder who has gained entry by any intrusion mechanism, can establish a backdoor
SSH server on a nonstandard port to facilitate communication. Although any intrusion is
worrisome, a human attacker who can establish an interactive SSH connection to explore
a compromised machine is particularly dangerous. Such an intrusion indicates a specific
interest in employing the victim machine, or seeing the information on it, or attacking the
performance of applications of normal users; this is typically considered to be an emergency
that warrants an urgent investigation.

For a TCP connection on any port, our streaming statistical algorithm classifies each
client packet with data as an SSH keystroke packet or not. This has a number of potential
applications, including classifying the connection as an interactive SSH login if SSH keystroke
packets are detected. The classification variables used in the algorithm are the following:

• the arrival order number of each packet of the connection at the monitor, a positive
integer;

• whether a packet is from the client or server;
• whether there are more than 22 packets in the connection;
• whether there are client packets after packet 22 or not;
• data size for client packets;
• data size for server packets;
• the number of packets between a client packet with data and the next acknowledging

server packet with data;
• interarrival time of two successive client packets with data;
• interarrival time of two successive echoing server packets;
• the ratio of a client interarrival time and the interarrival time of the corresponding

echoing server packets; and
• the number of packets between two successive client packets with data.

These variables constitute a description of the detailed packet dynamics of a TCP connection.
There exists a large body of literature devoted to the study of packet dynamics in relation
to TCP performance and control e.g., Paxson [11], Stevens [12]. Our variables have some
overlap with those of the TCP studies, but are not the same since our goal is network
security.

Other work in network security has employed variables that also overlap with ours to
detect interactive TCP logins. This past work, discussed in §7, uses aggregate statistics
across a connection based on certain variables, and not the detailed packet dynamics of our
algorithm. Our work uses the detailed dynamics because a keystroke creates a distinctive
dynamical pattern, which leads to highly accurate classification. Such success has already
been hypothesized by Donoho et al. [5, p. 33]:

There are also other sources of information that we haven’t discussed, the key one being the
two-way nature of interactive sessions. There is far more information than just the keystrokes
on the forward path through the stepping stones, there are also the echoes and command output
on the reverse path, and it should be possible to use information about these to substantially
improve detection.

This hypothesis is not recent. Progress has been slow on the idea because study of packet
dynamics for network security requires detailed, comprehensive statistical analysis of large,
complex packet-level databases; just passing over the data of each connection and creating a
small number of statistical summaries of each does not shed sufficient light on the dynamics.
Recently, though there have been major advances in computational environments for analysis
of large, complex data sets, and our work has made use of them (Guha et al. [7]).
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It might be thought that aggregate statistics would scale much more readily because the
packet dynamics require more detail, at least formally. In fact, working at the packet level
has allowed us to develop an algorithm that is streaming and easy to implement in a traffic
monitor, allowing it to scale to high traffic rates. The algorithm has been implemented in
the widely used Argus traffic audit software system, and the expectation is that it will be
very efficient at high traffic rates.

The following is a guide to the article. Section 2 gives a detailed description of the stream-
ing statistical algorithm. Section 3 describes the two-phase process of developing the algo-
rithm from the TCP packet traces collected. The algorithm has 8 statistical tuning factors
whose values have a large impact on performance; the factors are thresholds for variables
used in the algorithm for keystroke detection. Section 4 describes the formal test regimens
and data. Section 5 describes a designed experiment that varies the tuning factors to deter-
mine their impact on false positives and false negatives in classifying a TCP connection
as interactive or noninteractive. Section 6 investigates the accuracy of classifying a client
packet as a keystroke or not, using 36 scripted SSH connections. Section 7 presents past
work in connection classification and the relationship to the work here. Section 8 discusses
justification, results, limitations, and future work.

2. Details of the Algorithm
The algorithm consists of a sequence of 10 rules, applied in the order described below. The
first two are SSH-Protocol Rules, Rules I and II, and the next eight are Packet-Dynamics
Rules, Rules 1 to 8.

A keystroke is defined as a key depression that is part of typing to create text, including
the Enter/Return that ends the line. The definition excludes key depressions that result
in navigation through a document being viewed. Key depressions that are part of the SSH
handshake are not considered as keystrokes to be detected by the algorithm because their
packet dynamics are quite different.

2.1. SSH-Protocol Rules
These rules are based on the specifications of the SSH protocol and not the statistical
behavior of the classification variables.

Rule I (SSH Handshake Startup Deletion. Absence of Client Packets with Data).
Action: Packets with arrival order 1 to 22 are deleted. The ensuing algorithm starts at
packet 23. If there are fewer than 22 packets, or if there are 23 or more but but none are
client packets with data, then the the number of keystrokes in the connection is taken to be
zero and the algorithm ends.

The SSH handshake has keystrokes, for example, typing a password. However, the result-
ing packet dynamics are very different from those of keystrokes after an SSH interactive
session is established. Furthermore, the handshake occurs for noninteractive SSH connec-
tions, which are not a target for the important application of classifying a connection as
interactive SSH or not. So we do not take keystrokes of the handshake to be a target of
the keystroke classification, and if a handshake positive occurs, it is considered a false posi-
tive. However, false negatives are important as well; we do not want to remove packets that
are not a part of the handshake. The SSH protocol suggests that the minimum number of
packets that can occur in the handshake is 22, so we take 22 as the cutoff.

It is quite unlikely that a client packet with data in the handshake would be classified
as a keystroke. However, small issues such as this loom large because we seek exceptionally
small error rates, for example, on the order of a few 10s per million for the application of
connection classification as interactive or not.
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Rule II (SSH Packet Size). Action: Packets with arrival orders 23 and above that have
data, both server and client packets, must have data sizes equal to 4k where k is a positive
integer. If the data in any packet is not one of these sizes, then all client data packets are
classified as nonkeystrokes and the algorithm ends.

The SSH protocol specifies that the data in any packet of an SSH connection, interactive
or noninteractive, have the above sizes (Ylonen and Lonvick [16]).

2.2. Packet-Dynamics Rules
For connections that pass Rules I and II, each client packet with data and with packet order
23 or above is a candidate keystroke. The packet-dynamics rules classify the candidates in
order of their arrival, each starting out as a keystroke candidate. If a candidate does not
pass a rule, it is classified as a nonkeystroke and its candidacy ends. In other words, to
be classified as a keystroke, the candidate must pass Rules 1 to 8. There are 8 statistical
tuning factors that provide classification limits for 8 classification variables. The conceptual
framework is that keystroke packets have a greater probability to lie within the limits than
nonkeystroke packets. The values of the limits are chosen based on the statistical properties
of the classification variables and the statistical performance of the algorithm.

Rule 1 (Minimum Client Data Size). Classification variable dc = size of data in client
packet. Statistical tuning factor d

(m)
c . Action: Candidate passes if dc ≥ d

(m)
c .

Even though the current candidate data size dc conforms to the SSH sizes of Rule II,
there is a much smaller range of likely values of dc for keystrokes. d

(m)
c is a statistical tuning

factor that specifies the minimum value of the likely range of dc.

Rule 2 (Maximum Client Data Size). Statistical tuning factor d
(M)
c . Action: Candidate

passes if dc ≤ d
(M)
c .

d
(M)
c is a statistical tuning factor that specifies the maximum value of the likely range

of dc for keystrokes.

Rule 3 (Maximum Server Echo Gap Size). Classification variable gs = server echo gap
count. Statistical tuning factor g

(M)
s . Action: candidate passes if gs ≤ g

(M)
s .

The server echo packet of the current candidate packet is determined by matching the
sequence number of the latter with the acknowledgement number of the former. The number
of packets between the current candidate packet and its server echo is the echo gap size, gs. It
is equal to the following: (arrival order number of the echo packet)−(arrival order number of
the candidate)−1. For a keystroke, the gap is not large. The maximum, g

(M)
s , is a statistical

tuning factor for the maximum of the likely range of gs for keystrokes.

Rule 4 (Minimum Server Echo Data Size). Classification variable ds = size of data in
server echo packet. Statistical tuning factor d

(m)
s . Action: candidate passes if ds > d

(m)
s .

As with dc, the server echo data size ds has a likely range of observed values for keystrokes.
d

(m)
s is a statistical tuning factor that specifies the minimum value of the likely range of ds.

Rule 5 (Maximum Server Echo Data Size). Statistical tuning factor d
(M)
s . Action:

candidate passes if ds ≤ d
(M)
s .

d
(M)
s is a statistical tuning factor that specifies the maximum value of the likely range of

ds for keystrokes.

Rule 6 (Minimum Client Candidate Interarrival Time). Classification variable is =
interarrival time between the candidate packet and the last packet before the candidate that
passed Rule 5. Statistical tuning factor i

(m)
c . Action: Candidate passes if ic ≥ i

(m)
c . If the

current candidate packet is the first of the connection with dc > 0, then it automatically
passes.
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Client keystroke packets created by typing in an interactive SSH connection have cadences
that speed up and slow down. There are typing bursts, short cognitive pauses, and long
cognitive pauses. Thus, ic can vary substantially for true keystrokes. However, it has a lower
bound determined by the limit of human typing speed. The statistical tuning factor i

(m)
c is

a minimum for the the likely interarrival time for human typing.

Rule 7 (Maximum Absolute Log Interarrival Ratio). Variable is = the interarrival
time between the two server echos for the two client candidates in Rule 6. Classification vari-
able lcs = | log10(ic/is)|. Statistical tuning factor l

(M)
cs . Action: Candidate passes if lcs ≤ l

(M)
cs .

If the current candidate packet is the first of the connection with dc > 0, then it automatically
passes.

Under the assumption that congestion between the hosts is not substantial, the ratio of ic
and is can be expected to be close to 1 whatever the absolute value of ic. The statistical
tuning factor | log10(ic/is)| places a limit on the likely deviation from 1 for keystrokes.

Rule 8 (Maximum Previous-Current Gap). Classification variable gpc = the previous-
current gap, the count of packets between the previous and current candidates. Statistical
tuning factor g

(M)
pc . The current candidate can pass this rule from the initial evaluation,

making it a keystroke positive, or it can be deferred, making it a tentative candidate until
the next candidate packet has its initial evaluation. In either case the current candidate will
become the previous candidate when a new current candidate is encountered. The following
actions are based on the state of the previous candidate and value of gpc:

(1) State: gpc > g
(M)
pc , previous = tentative. Action: previous fails; current becomes

tentative.
(2) State: gpc > g

(M)
pc , previous= passed. Action: current becomes tentative.

(3) State: gpc ≤ g
(M)
pc , previous= tentative. Action: previous passes; current passes.

(4) State: gpc ≤ g
(M)
pc , previous= passed. Action: current passes.

The rule is based on behaviors during an interactive session. The typical pattern is an
alternation between typing episodes at the client with each resulting in commands to the
server, and output episodes from the server to the client. During a typing episode, a common
transmission pattern seen by the monitor is a keystroke from the client, an echo from the
server, an ACK from the client, and then the next keystroke. If this pattern occurs between
the previous and current candidates, then gpc = 2. g

(M)
pc is a statistical tuning factor that is

the maximum of the likely range of values of gaps between the keystrokes of a typing
episode. The output of a server episode tends to create more packets, which delineates the
episodes. A typing episode must have at least one letter, which results in two keystroke
packets, the letter plus Enter/Return. (Recall that a keystroke is defined as a key depression
that is part of typing to create text, including the Enter/Return that ends the line.) Rule 8
eliminates cases of isolated single candidate packets that are insufficiently close to other
packets classified as keystrokes to be part of a typing episode, but do not have the requisite
two keystrokes to be an episode.

3. Packet Trace Collection and Algorithm Development

3.1. Packet Trace Collection
Our research required packet traces—arrival timestamps and TCP/IP headers—on a gate-
way link carrying both directions of traffic between an inside network and the outside. The
requirement corresponds to the targeted initial application of our keystroke algorithm, which
is protection of an inside network by a monitor on the gateway link.

Furthermore, the research required trace collections for two types of connections: com-
modity and scripted. The former are the everyday traffic on a link carrying out the many
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applications running on the inside network. The latter are interactive connections initi-
ated specifically for development and testing of the algorithm; they consist of prescribed
commands and prescribed text input to programs that create or display documents. The
commodity connections enable testing the classification of connections as interactive or non-
interactive. The scripted connections enable testing of both the classification of connections,
and the classification of client packets with data as keystroke or nonkeystroke.

Our work started using previously collected traces of commodity connections for 4 days
18 hours from the University of Leipzig Internet access link (Wand Network Research
Group [13]). The inside network in this case is the University of Leipzig campus and certain
off-campus subnets.

The research also needed trace collection for an inside network for which we could access
log files for SSH to allow us to have highly accurate determinations of whether a port 22
connection was interactive or noninteractive. We set up trace collection on a subnet of the
Purdue Statistics Department. A monitor collected traces with tcpdump running on a server
connected to the span port of a switch that sees all traffic in and out of the subnet and
between two virtual LANS making up the subnet. Both commodity and scripted connections
were collected. For connections with inside host port 22 we were able to access log files. But
logging for the OpenSSH 5.3 server sshd was inadequate for verifying the correct classifica-
tion, so simple modifications were made to the source code to emit additional messages for
each connection. These messages captured the details of authentication and session char-
acteristics, such as whether it was a login, single command, or subsystem request; had an
allocated pseudo-tty; had requested port forwarding or X-window tunneling. Additional log
messages recorded the intra-session forwarding and tunneling activity and, at session close,
summary statistics on data transfer. This additional logging permits independent determi-
nation of SSH session attributes. In particular, it enabled highly accurate determinations of
whether a connection with inside host port 22 was interactive or noninteractive.

We ran scripted connections at inside host port 22 that were measured by the Purdue
trace collection. The ssh client program was modified to emit a tracer UDP packet every
time it sent a keystroke packet. These tracer packets were collected by the subnet monitor
along with packets from the SSH session, yielding a stream where the locations of keystroke
packets for scripted connections were precisely known.

3.2. Algorithm Development
Our development of the keystroke classification algorithm was done together with study of
its application to the classification of a connection as interactive or noninteractive.

The first phase of the work was an exploratory, unstructured study of traffic using both
visualization methods and numeric methods of statistical analysis to gain a basic under-
standing of connection packet dynamics: arrival times, packet sizes, flags, sequence numbers,
and acknowledgement numbers, as well as secondary variables derived from these primary
variables. There was a comparison of the dynamics when keystrokes occurred and when they
did not using commodity traces from Leipzig together with commodity and scripted connec-
tions from Purdue. Conclusions from this empirical study, guided by descriptions of the SSH
Architecture (Ylonen and Lonvick [15]) and of Transport (Ylonen and Lonvick [16]) Proto-
cols, led to a succession of algorithm versions ending in the streaming statistical algorithm
described in §2. Details of this first phase work are not conveyed here.

The second phase of the work was formal testing to verify the algorithm specifications of
the first phase, and to select the tuning factors of the algorithm. This used commodity and
scripted connections from Purdue, and is described in §§4–6.

4. Formal Test Regimens
The streaming statistical algorithm has 8 tuning factors for Rules 1 to 8 whose values must
be chosen. We studied the effects of the factors by formal test regimens. We collected or
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created a large number of test connections on the Purdue subnet (see §3). The connections
were broken into 4 subsets; each had a test regimen resulting in Regimens 1 to 4. There were
two types of analyses of data from the regimens. In the first, described in §5, we studied the
classification of the connections of Regimens 1 to 4 as interactive or noninteractive. In the
second, described in §6, we studied the classification of candidate packets as keystrokes or
nonkeystrokes; just Test Regimen 1 was used for this.

4.1. Classification of Connections as Interactive or Noninteractive
We ran a designed experiment with 243 combinations of the values of the tuning factors.
This means we ran the algorithm 243 times on each test connection from Regimens 1 to 4.
The response for each regimen has 243 values; each is a number of false positives or false
negatives, one per combination of the factors in the experiment. The term “positive” refers to
a connection that is interactive, and “negative” refers to a connection that is noninteractive.
The analysis of the 4 responses reveals the effects of the factors and leads to combinations
of the values of the factors that have low rates of false classification.

Test Regimen 1 used scripted interactive connections run on the Purdue subnet. They
consisted of 12 precisely defined interactive scripts. They ranged from the simple command
ls to more complex activities that used the emacs editor or that utilized sequences of com-
mands. Section 6 gives more detail about the scripts. Each script, when run once, results
in one SSH interactive connection. Each script was run 3 times, which resulted in 36 con-
nections. The response variable for Test Regimen 1, fn.22script, takes 243 values: the
numbers of false negatives out of 36 for the 243 combinations of the tuning factors.

Test Regiments 2 to 4 use Purdue subnet commodity connections. We collected five days
of traffic on the subnet monitor, which resulted in 1,021,336 connections.

Of the 7,964 commodity connections which had one host using port 22, Rule I eliminated
the 6,672 with fewer than 23 packets. Of those, 207 connections with no client data packets
were dropped. Rule II, which checks conformance of packet sizes with the SSH protocol,
eliminated another 38. Of these we were able to resolve all but one as actual packet errors
leading to session termination. The result was 1,047 connections. We were unable to deploy
the revised sshd on all inside hosts, which reduced the 1,047 commodity port 22 connections
to 369 for which we could verify whether they were interactive or not. 195 are interactive
and 174 are noninteractive.

Of the 1,013,372 commodity connections which did not involve port 22, Rule I eliminated
703,353 with fewer than 23 packets leaving 310,019 connections which were all assumed
to be noninteractive for purposes of the test. Of those, 150,228 connections with no client
data packets after packet 22 were dropped. Application of Rule II dropped another 158,516
connections, leaving 1,275 connections.

Test Regimen 2 uses the 195 interactive connections of port 22. The response variable,
fn.22script, is the numbers of false negatives out of 195 for the 243 combinations of the
tuning factors. Test Regimen 3 uses the the 174 noninteractive connections of port 22. The
response variable, fp.22script, is the numbers of false positives out of 195. Test Regimen 4
uses the 1,275 connections not using port 22. The response variable, fn.22script, is the
numbers of false positives out of 1,275.

4.2. Classification of Candidate Packets as Keystroke of Nonkeystroke
The measurement mechanism for Test Regimen 1 provides knowledge of which candidate
client packets in each connection are keystrokes and which are nonkeystrokes. We studied
false positives and false negatives for the classification of candidate packets as keystroke or
nonkeystroke. We did this for the 36 script connections with a single combination of values
of the tuning factors that resulted in very low false positives and false negatives in the above
connection classification.
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5. A Multifactor Designed Experiment
The Packet-Dynamics Rules have 8 statistical tuning factors, as described in §2, that are
thresholds for the variables used in the rules. The factors, their mathematical notation, and
their units of measurement are shown in the first 3 columns of Table 1. Performance of the
algorithm is measured by the 4 responses—fp.not22, fp.22, fn.22, and fn.22script—
described in §4. We ran a multiresponse designed experiment to determine the dependence
of the responses on the levels of the statistical tuning factors.

Our first-phase exploratory studies of algorithm development and performance provided
insight about ranges of the factors for which the performance is reasonable. Based on this we
designed and ran a multiple-response fractional-factorial statistical experiment that varied
all 8 factors in a systematic way in a region deemed to have reasonable performance, and
studied how the above 4 responses changed with the values of the factors.

The experiment used the 1,680 connections remaining after application of the SSH-
Protocol Rules to the total 1,021,336 connections, and after a small number of connections
were removed for other reasons. This is described in §4. For Test Regimens 1 to 4, the
remaining numbers are 36, 195, 174, and 1,275 connections, respectively. While only 0.16%
of the connections remain, an absolute number of 1,680 would be far too many for security
analysts to review, making the Packet-Dynamics Rules critical. These rules were applied to
just the first 1,500 packets of each of the 1,680 connections.

The choice of tuning parameters for statistical models and algorithms is often approached
in the statistics and machine learning literature as just an optimization: the best choice
of the values of the tuning parameters for the responses. Running a designed experiment
goes well beyond this by providing valuable knowledge about the impact of the factors on
the responses, the relationship of the responses as the factors change, the sensitivity of the
algorithm to the changes in the values of the factors chosen for the experiment, and the
trade-off between false positives and false negatives.

5.1. Experimental Design
The first step in the design was to select 3 values of each statistical tuning factor, which are
shown in the last 3 columns of Table 1. For each factor, candidate packet pass-through values
increase from left to right; that is, as the factor changes left to right, more packets pass the
rule test. The factors that are minima, shown with superscript m, allow more candidate
packets to pass as their values decrease; their values are ordered largest to smallest. The
factors that are maxima, shown with superscript M , allow more candidate packets to pass
through as their values increase; their values are ordered smallest to largest.

Given 8 statistical tuning factors, there are 38 = 6,561 possible combinations, each requir-
ing one experimental run. A run means applying the algorithm to each of the 1,680 connec-
tions with one combination of tuning factors, and computing the values of the responses. We

Table 1. Statistical tuning factors and their values in the designed experiment.

Tuning factor Notation Units 1 2 3

Minimum client data size d
(m)
c Bytes 48 32 24

Maximum client data size d
(M)
c Bytes 64 128 256

Server echo gap size g
(M)
s Number 2 3 4

Minimum server echo data size d
(m)
s Bytes 44 32 24

Maximum server echo data size d
(M)
s Bytes 64 128 256

Minimum client candidate interarrival i
(m)
c log10 sec −0.7 −1 −1.3

Maximum absolute log interarrival ratio l
(M)
cs | log10 ratio| 0.05 0.075 0.1

Maximum previous-current gap g
(M)
pc Number 2 4 7

Note. Increasing candidate packet pass-through: left to right.
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chose a fractional factorial design with 243 runs from Xu [14]. It is a minimum-aberration
resolution V design that spreads the points across the 8 dimensional space of the statistical
tuning factors to enable good characterization of the effects of the factors on the responses.
The design has a certain balance of the values of the factors. Each of the 3 values of a factor
occurs in 81 runs (81 × 3 = 243). Each of the 9 combinations of values of 2 factors occur
27 times (27 × 9 = 243).

5.2. Experimental Results: Dependencies Among the Responses
Each run of the experiment produces a 4-tuple of values of the four response variables. So the
243 runs produce 243 points in a 4-dimensional space. Figure 1 is a scatterplot matrix: all
pairwise scatterplots of the four variables. Each panel has 243 points plotted. The response
names appear in a diagonal of the matrix. The vertical scales of the 4 scatterplots in each
row of the matrix are the variable whose name appears in the row. The horizontal scales
of the 4 scatterplots in a column of the matrix are the variable whose name appears in the
column. Points have been jittered, a small amount of noise added, because a number of
plotting locations have multiple points. The notation for the scatterplot in column i and
row j is scatterplot ij. So the lower left scatterplot is 11. Note that scatterplot ij has the
same variables as scatterplot ji, but with the scales reversed.

Figure 1. Scatterplot matrix of the 4 responses—fp.22, fn.22, fp.not22, and fn.22script—for
the 243 runs of the fractional factorial designed experiment.
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Figure 1 reveals important relationships among the responses. Scatterplot 32 shows a
substantial trade-off between fn.22 and fp.22, a strong negative dependence. The same
negative dependence occurs for fn.22 and fp.not22 in scatterplot 31. Scatterplot 21 shows
fp.22 and fp.not22 have a positive dependence although there are there are a number of
quite low values of fp.not22 with very large values of fp.22. This likely occurs because
noninteractive connections at port 22, since they are SSH, can behave differently from the
noninteractive connections at other ports.

We can also see that fn.22script is always 0. None of the 36 connections is ever classified
as noninteractive across the 243 runs. This might be occurring because of conservative,
slower typing in the scripts to avoid typing errors. It does suggest a certain robustness of
the algorithm to different modes of typing.

5.3. Pass-Through Analysis of False-Positives and False-Negatives
The trade-off between false positives and false negatives results from different levels of
candidate packet pass-through. As discussed earlier, as we go left to right in Table 1 through
the values of each statistical tuning factor, the number of candidate packets that pass the
rule tends to increase. This, in principle, increases the number of false positives and decreases
the number of false negatives. We can use this notion to determine the rules whose changing
levels are most responsible for the trade-off.

We define a pass-through level variable for the values of the statistical tuning factors:
level 1 = the lowest level (column 4 in Table 1), level 2 = the middle level (column 5), and
level 3 = the highest level (column 6). Next we select two sets of runs, the good-negative
set, for which fn.22≤ 10, and the good-positive set, for which fp.22 ≤2. The cut-off values
were chosen to achieve two goals. The first, which we can see achieved in Figure 1, is that the
two sets have different runs, that is, different combinations of the statistical tuning factors.
The second is that the two sets have about the same number of runs; there are 66 in the
good-negative and 63 in the good-positive.

Figure 2 compares the fractions of occurrence of pass-through levels 1, 2, and 3 for the
two sets. There is little to negligible difference between the good-negative and good-positive
sets for Rules 1, 3, 4, and 7; these rules play, overall, little role in the trade-off between
false positives and false negatives. The other rules do substantially more. The fractions for
the good-negative set tend to be higher for levels 2 and 3, and lower for level 1, than the
good-positive set, creating more pass-through. The most dramatic differences are in Rules 2
and 5; pass-through level 1 is never taken by the good-negative runs.

5.4. Tuning Parameter Values for Small Values of the Responses
Trade-off of false positives and false negatives is also informative because the tolerance
for each type of error is not necessarily the same for different inside networks. For the
Purdue subnet, we seek false negatives as low as possible; a missed intrusion can have major
consequences. False positives can be more readily tolerated provided they do not become
more than a minor burden for security analysts. With this in mind, we select runs with a
compromise that gives somewhat higher priority to control of false negatives: fn.22 ≤ 10,
fp.not22≤ 10, fp.22≤ 20, and fn.22script= 0. This was achieved by 8 runs.

Figure 3 displays the fraction of occurrences of the pass-through variable for the 8 runs in
the same manner as Figure 2. Comparison of the two figures shows that for the compromise
runs in Figure 3, there is a greater balancing of pass-through than in Figure 2. For Rule 8,
level 1 is always the value. This means that the rule is has a tight limit of 2 packets between
two keystrokes in a typing episode. For Rule 2, level 2 is always the value. This means that
the rule limits the data in a client keystroke to a maximum of 128 bytes; this results from
the encryption algorithms employed by SSH. For Rule 1, however, the level is not critical,
as we saw in Figure 2 as well. One run that is a very reasonable choice from the 8 runs is
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Figure 2. For each rule, the fraction of occurrences of 3 levels of the pass-through variable for a
set of runs with low fn.22 (◦) and another set of runs with low fp.22 (+).
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Figure 3. For each rule, the fraction of occurrences of 3 levels of the pass-through variable for
runs that are a partial compromise of false positives and false negatives, but with somewhat higher
priority to control of false negatives.
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Table 2. Values of pass-through variables to minimize false positives and false negatives, but with
a preference for greater control of false negatives.

Rule 1 2 3 4 5 6 7 8

Tuning factor d
(m)
c d

(M)
c g

(M)
s d

(m)
s d

(M)
s i

(m)
c l

(M)
cs g

(M)
pc

Pass-through variable 1 2 2 3 3 3 1 1

shown in Table 2 which has 2 values of the pass-through variable at level 2, and 2 each at
levels 1 and 3, exactly balancing the pass-through.

5.5. Rule Impact
The previous discussion shows how the 4 responses depend on the statistical tuning factors
over the ranges of values chosen in the experiment. However, this does not speak directly
to the impact that each rule has on the classification. We studied the impact by analyzing
the number of packets dropped by each rule. To do this we need a specific combination of
values of the factors. Here, we will use the values in Table 2.

For each of Rules 1 to 8, the impact metric for the rule based on one connection is the
number of client candidate packets dropped by the rule. If after application of a rule, no
client candidates remain in the connection, then the values of the metric for any succeeding
rules are 0. So the impact for a rule is more precisely a marginal impact given any previous
rules.

The impact metric for a collection of m connections has m values for each rule. We compare
the 8 distributions of values to assess rule impact for the collection. Here, we describe this
comparison for the connections of Test Regimens 3 (noninteractive, port 22, m = 174) and 4
(noninteractive, not port 22, m = 1,275).

We begin our comparison of the impact distributions of Regimen 4 by considering, for
Rule k, the number of connections, Nk, out of 1,275 with at least one packet dropped:

[(k) Nk]: [(1) 182], [(2) 1,135], [(3) 65], [(4) 0],

[(5) 51], [(6) 44], [(7) 21], [(8) 99].

This gives us certain information about the drop distributions. Let nki for i = 1, . . . ,Nk be
the positive values, ordered from smallest to largest, of the number dropped for Rule k. Each
panel of Figure 4 graphs, log2(nki) against i/Nk for one k. So a fraction i/Nk of the values
on the vertical scale are less than or equal to log2(nki). This conveys more information
about the drop distributions. Rule 4 does not appear since it does not result in drops for any
connection. Rule 2 has the largest impact by far. It dropped packets in 1,135 of the 1,275
connections, Rule 1 has the next largest impact, and then Rules 8 and 5. Rule 4 appears to
have the least impact, with none of the connections affected.

For Regimen 3, the following is the number of connections out of 174 with at least one
packet dropped for each rule:

[(k) Nk]: [(1) 150], [(2) 173], [(3) 54], [(4) 0],

[(5) 73], [(6) 168], [(7) 18], [(8) 174].

Figure 5 uses, for Regimen 3, the same display method as Figure 4. The impact of Rules 1,
2, 6, and 8 are quite substantial. Rule 4 remains as the one with no impact.

This methodology can be used to prune rules from the algorithm. For this analysis, Rule 4
is a candidate for deletion. However, it must be emphasized that for another choice of tuning
parameters that balance false positives or false negatives in a different way, results could be
quite different. Extensive study of impact in this way is beyond the scope of the paper.
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Figure 4. Each panel plots the log base two of the nonzero counts of client keystrokes dropped by
one rule for the 1,275 connections from Test Regimen 4.
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Note. No panel is present for Rule 4 because the rule does not result in packet drops for any connection.

Figure 5. Each panel plots the log base 2 of the nonzero counts of client keystrokes dropped by
one rule for 176 connections from Test Regimen 3.
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Note. No panel is present for Rule 4 because the rule does not result in packet drops for any connection.

6. Testing the Keystroke Packet Classification
The methodology for Test Regimen 1 allows us to test the accuracy of the classification of
client packets with data as keystrokes or nonkeystrokes. The SSH connections of the regimen
consist of 12 scripted interactive SSH sessions.

Each session was repeated 3 times for a total of 36 connections. All were carried out by
one individual using a client outside the Purdue subnet and an SSH server inside the subnet.
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Table 3. Test Regimen 1: Results for Sessions 1 to 3.

False False Client Client Server Server
Session Keystrokes negative positive data packets packets data packets packets

1 3 0 0 9 25 15 17
3 0 0 9 26 16 18
3 0 0 9 26 16 18

2 13 0 0 19 46 25 26
13 0 0 19 44 25 26
13 0 0 19 44 23 24

3 9 0 0 15 38 22 24
9 0 0 15 37 21 23
9 0 0 15 37 21 23

For each connection, the SSH packets and UDP key-press tracer packets were collected. The
tracer packets are used as labels for the client keystroke packets. The streaming statistical
algorithm was applied to each connection using statistical tuning factor values from Table 2.

Each of Sessions 1–3 consists of a single command resulting in a small number of packets.
For example, one session is a command inquiring about the system version information.

uname -a 〈return〉

Table 3 shows results for Sessions 1–3. There were no false positives or false negatives.
Each of Sessions 4–8 consist of multiple commands over several lines. Compared with

Sessions 1–3, there are more keystrokes and sessions are longer. One session is a set of
application development build commands.

cd tmp 〈return〉
cd git-1.6.3.1 〈return〉
./configure 〈return〉

Table 4 shows results for Sessions 4–8. There were no false positives or false negatives.
Sessions 9–12 were applications which themselves required users to type text, e.g., the vi

editor. Editors also have key presses that are not keystrokes by our definition, but rather

Table 4. Test Regimen 1: Results for Sessions 4 to 8.

False False Client Client Server Server
Session Keystrokes negative positive data packets packets data packets packets

4 32 0 0 38 84 45 47
32 0 0 38 85 46 48
32 0 0 38 84 45 47

5 53 0 0 59 262 202 204
53 0 0 59 262 202 204
53 0 0 59 264 204 206

6 31 0 0 37 452 414 416
31 0 0 37 517 479 481
31 0 0 37 518 480 482

7 203 0 0 209 462 252 254
203 0 0 209 460 250 252
203 0 0 209 462 252 254

8 173 0 0 180 1,771 1,591 1,594
173 0 0 180 1,788 1,608 1,610
173 0 0 180 1,791 1,611 1,613
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Table 5. Test Regimen 1: Results for Sessions 9 to 12.

False False Client Client Server Server
Session Keystrokes negative positive data packets packets data packets packets

9 54 1 2 60 163 102 106
54 1 2 60 165 104 108
54 1 2 60 164 103 107

10 9 0 0 19 57 37 39
9 0 0 19 57 37 39
9 0 0 19 57 37 39

11 338 1 0 344 697 353 357
338 1 0 344 697 353 357
338 1 0 344 696 352 356

12 177 1 3 198 490 303 307
177 1 3 198 489 301 305
177 1 3 198 495 306 310

act as navigation or editing aids. For example, pressing the j key in vi command mode
moves the cursor down one line. Table 5 shows results for Sessions 9–12. The causes of false
negatives and positives for the session were the same for the 3 connections.

The single false negative in Session 9 (creating a document using the emacs editor), was
a text creation character that also cleared the screen. Here, the data size of the server echo
for this was larger than the maximum for Rule 5. The two false positives ([ctrl-x] and
[ctrl-c]) are the key press sequence to quit emacs.

Session 11 consisted of launching vi and transcribing a paragraph. The first keystroke
(corresponding to the first letter of the paragraph) was a false negative because its server
acknowledgment did not contain data. This caused it to be rejected by Rule 4.

Session 12 consisted of browsing man pages and paging through the output of UNIX
commands. One of the activities in this session was to search for a word in a man page. The
search was initiated by pressing /, typing the search word and pressing Enter. The man
program then found and highlighted the searched word. The packet corresponding to the
Enter was rejected by Rule 5 because the server response was 1,448 bytes. Of the three false
positives, two were consecutive presses of the space bar to navigate to the following page
and the third was the press of q to quit the man browser.

7. Past Work
There is a large literature on classifying connections using connection variables that have
one value per connection and are based on information in the timestamps and in trans-
port and IP headers. In this work, statistical and machine-learning methods are used to
cluster connections or to classify them into categories such as interactive or noninteractive.
(Alshammari et al. [1], Charles et al. [2], De Montigny-Leboeuf [3], Ding et al. [4], Donoho
et al. [5], Dunnigan and Ostrouchov [6], Hernandez-Campos et al. [8], Horton and Safavi-
Naini [9], Karagiannis et al. [10], Yung [17], Zhang and Paxson [18, 19].) In contrast, our
work performs differently by operating directly at the packet-dynamical level and identifying
individual keystroke packets. We are unaware of any other past work on such packet-level
keystroke detection.

Our work is most similar to research in detecting backdoors and stepping stone traffic.
Zhang and Paxson [18] classify as interactive, connections with a high proportion of small
packets with inter-arrival times in the range of 10 ms to 2 sec. Their algorithm also checks
packet lengths for conformance to the SSH protocol: if 75% of the packets meet the spec-
ification, the connection is declared SSH. Timing analysis along with packet size has been
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used in the detection of stepping stones by Zhang [19], and in the detection of interactive
terminal sessions over stepping stones by Yung [17]. Ding et al. [4] estimated the full RTT for
long chains in a stepping stone attack; using TCP sequence and acknowledgement numbers,
it identified the interval from the end of the command output of the server to the next client
input. Donoho et al. [5] was able to demonstrate that even if traffic is jittered for purposes
of evasion, there are theoretical limits on the ability of attackers to disguise traffic, and used
a wavelet-based approach for multiscale detection. This stepping stone detection sought to
correlate the inbound and outbound connections of an intermediate stepping stone machine.

8. Discussion

8.1. Results
The algorithm succeeds because the keystroke and echo packets create an identifiable dynam-
ical pattern. The size and timing relationships of these packets is clearly different from those
which are seen for machine-generated traffic.

The SSH Protocol Rules I and II play an important role in the algorithm by dramatically
reducing the number of connections under consideration. Here, the SSH handshake and
encryption are our friends. The handshake requires at least 22 packets; then, we need client
packets after that to serve as candidate keystrokes. Rule I, taking these two matters into
account, eliminates the majority of connections from consideration. The sizes mandated
for encryption create a stark length signature, and Rule II drops half of the remaining
connections.

Only a very small fraction of connections remain, 0.16% for our Purdue subnet data. But
because a human cyber security analyst eventually needs to resolve connections classified
as interactive, and because we started in our case with about 1 million connections over
5 days, the 1,680 remaining are far too many for the analyst. This is what makes the Packet-
Dynamics Rules crucial. The formal testing, and the experiment to explore the effect of the
tuning factors, reveal how thresholds can be set to reduce the connections to a manageable
number.

Our success has arisen from working at the packet dynamical level. We believe this can
be a fruitful approach in general for cyber security monitoring and forensics. Machine-to-
machine communication appears to be full of distinctive dynamical patterns induced by
applications, libraries, and other software layers, providing rich information for detection of
subversive behavior.

8.2. Limitations
The Packet-Dynamics Rules use the timing characteristics of client data packets and their
server responses. Their performance could suffer in conditions with much network congestion
or where servers are overloaded. All of our experience to date has been on networks where
there does not appear to be substantial jitter of the packet timings during an individual
connection; and servers are not so burdened as to have to defer generating echoes. We have
tried informally to stress the algorithm by using stepping stones on remote networks, but
formal testing is warranted.

Of course attackers will try to evade detection by the algorithm. Typical behavior is to
follow a path of least resistance, for example, SSH under current surveillance conditions. If
our algorithm and others like it became widespread, then attackers have the motivation to
evade, but not otherwise. And then the algorithm needs to change, but until evasion occurs,
there is no motivation to do so.

The SSH protocol permits the multiplexing of data streams within a single active connec-
tion through a variety of tunneling mechanisms. One example is multiple xterm windows
using a single SSH tunnel. This could result in keystroke traffic being shrouded by other
data. A attacker could use this to hide.
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Other example evasions can be seen when we divide the rules into two rough groupings.
For Size, Rules 1, 2, 4, and 5 identify candidate keystrokes by packet size ranges; Timing,
Rules 3, 6, 7, and 8 identify timing characteristics of interactive traffic.

In Timing, Rule 6, which depends on the cadences derived from the human factors of
typing, can be directly attacked using an unmodified SSH client if the session is launched
with the “−T” flag. This prevents the server from allocating a pseudo-tty and forces the
client program to assemble keystrokes into entire lines of input before sending them to
the server. However, this has significant negative consequences for the attacker because
the session no longer appears interactive at the server. Many commands useful for ad hoc
exploration will simply not work or have their function severely reduced.

To evade Size constraints a skilled attacker, one who is able to modify his SSH client
code, can convince the algorithm that the session is noninteractive by padding all keystroke
packets to have lengths larger than the maximum client packet size in Rule 2. Such padding
would have to be carefully done so as to be trimmed off again by the server’s message
unpacking code.

8.3. Implementation in the Argus Traffic Audit System
For it to be useful for everyday network security, our algorithm needs to be part of a network
traffic monitor operating in realtime. To this end, we are collaborating with QoSient, LLC
(http://qosient.com) to imbed the algorithm in their Argus network traffic sensor. Argus is
widely deployed in commercial, government, and educational settings. It has been used to
monitor extremely high-speed networks in realtime. The bidirectional architecture makes it
well-suited as a platform for packet dynamics. Argus has long had features for measuring
packet loss, jitter, and round-trip times in monitored traffic.

The most recent version, Argus 3, adds flexible mechanisms which permit additional
attributes to be calculated for connections. We leverage this facility for keystroke detection.
The prototype code, now in pilot deployment, consisting of a few hundred lines of C. A few
dozen lines constitute the heart of the code which runs over a window consisting of only
the previous candidate and current packets. The rest consists of setup, debug tracing, and
a small queue which accounts for out-of-order packet arrival.

Acknowledgements
This work was supported in part by the Army Research Office MURI Program under award
W911NF-08-1-0238, the National Science Foundation under award CCF-0937123, and the
U.S. Department of Homeland Security under a Center of Excellence award. This article has
been prepared in accordance with LLNL Contract DE-AC52-07NA27344.

References
[1] R. Alshammari, P. T. Lichodzijewski, M. Heywood, and A. N. Zincir-Heywood. Classifying SSH

encrypted traffic with minimum packet header features using genetic programming. GECCO
’09: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Com-
putation Conference, Association for Computing Machinery, New York, 2539–2546, 2009.

[2] W. V. Charles, F. Monrose, and G. M. Masson. On inferring application protocol behaviors in
encrypted network traffic. Journal of Machine Learning Research 7:2745–2769, 2006.

[3] A. De Montigny-Leboeuf. Flow attributes for use in traffic characterization. Technical report
CRC-TN-2005-003, Communications Research Centre, Ottawa, Canada, 2005.

[4] W. Ding, M. J. Hausknecht, S. Hsuan, S. Huang, and Z. Riggle. Detecting stepping-stone
intruders with long connection chains. International Symposium on Information Assurance
Security 2:665–669, 2009.

[5] D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Staniford. Multiscale
stepping-stone detection: Detecting pairs of jittered interactive streams by exploiting maxi-
mum tolerable delay. Proceedings of the 5th International Symposium on Recent Advances in
Intrusion Detection, Springer-Verlag, Berlin, 17–35, 2002.



Guha et al.: Detection of SSH Keystroke Packets
90 12th INFORMS Computing Society Conference, c© 2011 INFORMS

[6] T. Dunnigan and G. Ostrouchov. Flow characterization for intrusion detection. Technical
report, Oak Ridge National Laboratory, Oak Ridge, TN, 2000.

[7] S. Guha, R. P. Hafen, and W. S. Cleveland. Visualization databases for the analysis of large
complex data sets. Journal of Machine Learning Research 5:193–200, 2009.

[8] F. Hernandez-Campos, F. Donelson-Smith, K. Jeffay, and A. B. Nobel. Understanding patterns
of TCP connection usage with statistical clustering. Proceedings of the 13th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (September 27–29), Atlanta, GA, IEEE Computer Society, 35–44, 2005. Available at
http://www.computer.org/portal/web/csdl/doi/10.1109/MASCOT.2005.76.

[9] J. Horton and R. Safavi-Naini. Detecting policy violations through traffic analysis. 2nd Annual
Computer Security Applications Conference, Applied Computer Security Associates, Silver
Spring, MD, 109–120, 2006.

[10] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel traffic classification
in the dark. Sigcomm ’05: Proceedings of the 2005 Conference On Applications, Technologies,
Architectures, and Protocols for Computer Communications, New York, 229–240, 2005.

[11] V. Paxson. End-to-end internet packet dynamics. Proceedings of the ACM SIGCOMM Con-
ference, Association for Computing Machinery, New York, 139–152, 1997.

[12] W. R. Stevens. TCP/IP Illustrated, Vol. 1. The Protocols. Addison-Wesley, 1994.
[13] Wand Network Research Group. http://www.wand.net.nz/wits/leipzig/1/. Accessed May 2,

2010.
[14] H. Xu. A catalogue of three-level regular fractional factorial designs. Metrika 62:259–281, 2005.
[15] T. Ylonen and C. Lonvick. RFC 4251: The secure shell (SSH) protocol architecture. 2006.

http://www.ietf.org/rfc/rfc4251.txt. Accessed April 12, 2010.
[16] T. Ylonen and C. Lonvick. RFC 4253: The secure shell (SSH) transport layer protocol. 2006.

http://www.ietf.org/rfc/rfc4253.txt. Accessed April 12, 2010.
[17] K. H. Yung. Detecting long connecting chains of interactive terminal sessions. Proceedings

of the 5th International Symposium on Recent Advances in Intrusion Detection. A. Wespi,
G. Vigna, L. Deri, eds. Lecture Notes in Computer Science, Vol. 2516. Springer-Verlag, Berlin/
Heidelberg, 1–16, 2002.

[18] Y. Zhang and V. Paxson. Detecting backdoors. Proceedings of the 9th USENIX Security Sym-
posium, Vol. 9. USENIX Association, Denver, 157–170, 2000.

[19] Y. Zhang and V. Paxson. Detecting stepping stones. Proceedings of the 9th USENIX Security
Symposium, Vol. 9. USENIX Association, Denver, 171–184, 2000.


