
ICS 2011
12th INFORMS Computing Society Conference Computing Society

c© 2011 INFORMS | isbn 978-0-9843378-1-1
doi 10.1287/ics.2011.0009

Factory Crane Scheduling by Dynamic
Programming

Ionuţ Aron
WorldQuant LLC, Old Greenwich, Connecticut 06870, ionut.aron@gmail.com

Latife Genç-Kaya
Istanbul Şehir University, Istanbul, Turkey 34662, latifegenc@sehir.edu.tr

Iiro Harjunkoski
ABB Corporate Research, 68526 Ladenburg, Germany, Iiro.Harjunkoski@de.abb.com

Samid Hoda, J. N. Hooker
Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
{shoda@andrew.cmu.edu, john@hooker.tepper.cmu.edu}

Abstract We describe a specialized dynamic programming algorithm for factory crane schedul-
ing. An innovative data structure controls the memory requirements of the state space
and enables solution of problems of realistic size. The algorithm finds optimal space-
time trajectories for two factory cranes or hoists that move along a single overhead
track. Each crane is assigned a sequence of pickups and deliveries at specified locations
that must be performed within given time windows. The cranes must not interfere
with each other, although one may yield to the other. The state space representa-
tion permits a wide variety of constraints and objective functions. It is stored in a
compressed data structure that uses a cartesian product of intervals of states and
an array of two-dimensional circular queues. We also show that only certain types of
trajectories need be considered. The algorithm found optimal solutions in less than a
minute for medium-sized instances of the problem (160 tasks, spanning four hours).
It can also be used to create benchmarks for tuning heuristic algorithms that solve
larger instances.

Keywords crane scheduling; dynamic programming

1. Introduction
Manufacturing facilities frequently rely on track-mounted cranes to move in-process materi-
als or equipment from one location to another. A typical arrangement, and the type studied
here, allows one or more hoists to move along a single horizontal track that is normally
mounted on the ceiling. Each hoist may be mounted on a crossbar that permits lateral
movement as the crossbar itself moves longitudinally along the track. A cable suspended
from the crossbar raises and lowers a lifting hook or other device.
When a production schedule for the plant is drawn up, cranes must be available to move

materials from one processing unit to another at the desired times. The cranes may also
transport cleaning or maintenance equipment. Because the cranes operate on a single track,
they must be scheduled so as not to interfere with each other. One crane may be required
to yield (move out of the way) to permit another crane to pick up or deliver its load.
The problem is combinatorial in nature because one must not only compute a space-

time trajectory for each crane, but must decide which crane yields to another and when.

93

Aron et al.: Factory Crane Scheduling
94 12th INFORMS Computing Society Conference, c© 2011 INFORMS

A decision made at one point may create a bottleneck that has unforeseen repercussions
much later in the schedule. Production planners may put together a schedule that seems to
allow ample time for crane movements, only to find that the crane operators cannot keep
up with the schedule.
In this paper we analyze the problem of scheduling two cranes and describe an exact

algorithm, based on dynamic programming, to solve it. We assume that each crane has been
pre-assigned a sequence of jobs to perform. A crane may be required to carry out multiple
tasks at various locations before completing a job, and each job may specify a different set
of tasks. Time windows may be given for the job as a whole and/or the tasks within a job.
We selected a dynamic programming approach because it not only solves a problem of

this kind but accommodates a wide variety of constraints that may arise in factory settings.
Any constraint or objective function that can be defined in terms of the current state vector
can be implemented. For example, precedence relations may be imposed between jobs, or
between tasks in different jobs. A crane may be allowed to pause, or yield to the other crane,
between certain tasks but not others. Many linear and nonlinear objective functions are
possible, although in practice the objective is normally to follow the production schedule as
closely as possible.
The state space is large, due to the fine space-time granularity with which the problem

must be solved, as well as the necessity of keeping up with which task a crane is performing
and how long it has been processing that task. To deal with these complications we introduce
a novel state space description that represents many states implicitly as a cartesian product
of intervals. The state space is efficiently stored and updated in a data structure that uses
an array of two-dimensional circular queues. These enhancements accelerate solution by
at least an order of magnitude and allow us to solve problems of realistic size within a
reasonable time.
This research is part of a larger project in which both heuristic and exact algorithms

have been developed for use in crane scheduling software. The heuristic method makes
crane assignment and sequencing decisions as well as computing space-time trajectories, and
it is fast enough to accommodate large problems involving several cranes. However, once
the assignments and sequencing are given, the heuristic method may fail to find feasible
trajectories when they exist and reject good solutions as a result. We therefore found it
important to solve the trajectory problem exactly for a given assignment and sequencing, as
a check on the heuristic method. The exact algorithm has practical value in its own right,
because two-crane problems are common in industry, and the algorithm solves instances of
respectable size within a minute or so. Yet it has an equally important role in the creation of
benchmarks against which heuristic methods can be tested and tuned for best performance.
We begin by deriving structural results for the two-crane problem that restrict the tra-

jectories that must be considered. This not only accelerates solution but simplifies the oper-
ation of the cranes by restricting their movements to certain predictable patterns. We then
describe the dynamic programming algorithm and the state space representation, and we
conclude with computational results and directions for further research.

2. Previous Work
Crane scheduling has received a great deal of study, but little attention has been given
to the factory crane scheduling problem addressed here. The literature focuses primarily
on two types of problems: movement of materials from one tank to another in an electro-
plating or similar process (normally referred to as hoist scheduling problems), and loading
and unloading of container ships in a port. Both differ significantly from the factory crane
problem.
A classification scheme for hoist scheduling problems appears in Manier and Bloch [13].

These problems typically require a cyclic schedule involving one or more types of parts,

Aron et al.: Factory Crane Scheduling
12th INFORMS Computing Society Conference, c© 2011 INFORMS 95

where parts of each type must visit specified tanks in a fixed sequence. The most common
objective is to minimize cycle time.
Much research in this area deals with the single-hoist cyclic scheduling problem

(Armstrong et al. [1], Liu et al. [12], Phillips and Unger [17]). Even this restricted problem
is NP-complete (Lei and Wang [5]).
Several papers address cyclic two-hoist and multihoist problems. One approach partitions

the tanks into contiguous subsets, assigns a hoist to each subset, and schedules each hoist
within its partition (Lei and Wang [6], Zhou and Li [23]). A better solution can generally
be obtained, however, by allowing a tank to be served by more than one hoist. Models for
this problem assign transfer operations to hoists and determine when each operation should
begin and end (Che and Chu [2], Lei et al. [7], Leung and Levner [8], Leung and Zhang [9],
Leung et al. [10], Manier et al. [14], Riera and Yorke-Smith [18], Rodošek and Wallace [19],
Varnier et al. [20], Yang et al. [21]). These models do not explicitly compute space-time
trajectories but avoid collisions by selecting departure and arrival times that allow hoists to
make the necessary movements without interference.
Our problem differs from the typical hoist scheduling problem in several respects. The

schedule is not cyclic. The problem is given as a set of jobs rather than parts to be processed.
Each crane is assigned a sequence of jobs rather than transfer operations. A job may consist
of several tasks to be performed consecutively by one crane in a specified order. The jobs
may all be different. Both loaded and empty cranes may be allowed to pause or yield,
and permission to do so may depend on which task is being executed. There may also be
precedence constraints and a wide variety of objective functions.
Port cranes are generally classified as quay cranes and yard cranes. Quay cranes may

be mounted on a single track, as are factory cranes, but the scheduling problem differs
significantly. The cranes load (or unload) containers into ships rather than transferring
items from one location on the track to another. A given crane can reach several ships, or
several holds in a single ship, either by rotating its arm or perhaps by moving laterally along
the track. The problem is to assign cranes to loading (unloading) tasks, and schedule the
tasks, so that the cranes do not interfere with each other (Daganzo [3], Kim and Park [4],
Mocchia et al. [15]).
Yard cranes are typically mounted on wheels and can follow certain paths in the dockyard

to move containers from one location to another (Ng [16], Zhang et al. [22]). Port and yard
cranes clearly present a different type of scheduling problem than factory cranes.
An early study of factory crane scheduling (Lieberman and Turksen [11]) presents heuristic

algorithms that obtain noninterfering solutions only under certain conditions. A worst-case
bound is derived for makespan in the two-crane case. However, the method is insufficiently
general to address the problem considered here. There is no attempt to apply it to realistic
problems, and no computational results are reported.

3. The Optimal Trajectory Problem
As noted above, we define a crane scheduling problem to consist of a number of jobs, each of
which specifies several tasks to be performed consecutively. For example, a job may require
that a crane pick up a ladle at one location, fill the ladle with molten metal at a second
location, deliver the metal to a third location, and then return the ladle. Tasks may also
involve maintenance and cleaning activities. The same crane must perform all the tasks in
a job and must remain stationary at the appropriate location while processing each task.
The location and processing time for each task are given (Figure 1), as are release times

and deadlines. Each crane is pre-assigned a sequence of jobs. Each job must finish before
the next job assigned to that crane begins.
In this study we explicitly account only for the longitudinal movements of the crane along

the track. We assume that the crane has time to make the necessary lateral and vertical

Aron et al.: Factory Crane Scheduling
96 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure 1. Sample space-time trajectory for one task (left) and extremal trajectory for the left
crane (a) when the destination is to the right of the origin, and (b) when the destination is to the
left of the origin (right).

Wait as
long as
possible

Move as
soon as
possible

Delivery
point

Distance

Pickup
point

Unloading

Loading

T
im

e

(a) (b)

Note. Left, the shaded vertical bars denote processing, which in this case consists of loading and unloading.

movements as it moves from one task location to another. This results in little loss of
generality, because any additional time necessary for lateral or vertical motion can be built
into the processing time for the task.
The problem data are:

Rj ,Dj , Pj = release time, deadline, and processing time of task j;
Lj = processing location (stop) for task j;
c(j) = crane assigned to task j;

v,Lmax = maximum crane speed and track length; and
δ= minimum crane separation.

Note that we refer to the processing location of a task as a stop.
We suppose for generality that there are cranes 1, . . . ,m, where crane 1 is the left crane

and crane m the right crane, although we solve the problem only for m= 2. Tmax is the
length of the time horizon. The problem variables are:

xc(t) = position of crane c at time t;
yct = task being processed by crane c at time t (0 if none); and
τj = time at which task j starts processing.

Task j therefore finishes processing at time τj +Pj . We assume that the tasks are indexed
so that tasks assigned to a given crane are processed in order of increasing indices.
If we measure time in discrete intervals of length ∆t, the basic problem with n tasks

and m cranes may be stated

min f(τ)

0≤ xc(t)≤Lmax

xc(t)− v∆t≤ xc(t+∆t)≤ xc(t)+ v∆t

yct > 0 ⇒ xc(t) =Lyct

 all c, all t∈ T ,

(a)

(b)

(c)

xc(t)≤ xc+1(t)−∆, c= 1, . . . ,m− 1, all t∈ T , (d)

Rj ≤ τj ≤Dj −Pj

yc(j)t = j, t= τj , . . . , τj +Pj −∆t

}
j = 1, . . . , n,

(e)

(f)

{c(j) = c(j′), j < j′} ⇒ τj < τj′ , j, j′ = 1, . . . , n, (g)

xct, τj ∈ R, yct ∈ {0, . . . , n}, all c, all t∈ T ,

(1)

Aron et al.: Factory Crane Scheduling
12th INFORMS Computing Society Conference, c© 2011 INFORMS 97

where T = {0,∆t, . . . , Tmax}. Constraint 1(a) requires that the cranes stay on the track, and
(b) that their speed be within the maximum. Constraint 1(c) implies that a crane must be
at the right location when it is processing a task. Constraint 1(d) makes sure the cranes do
not interfere with each other. Constraint 1(e) enforces the time windows, and 1(f) ensures
that processing continues for the required amount of time once it starts. Constraint 1(g)
requires that the tasks assigned to a crane be processed in the right order. A number of
additional constraints may be imposed in the dynamic programming model, as described
in §5 below.
We assume that the objective f(τ) is a function of the task start times, because this

is sufficient for practical application and allows us to prove the structural results below.
Because the dynamic programming model requires separability, we assume f(τ) has the
form

∑
j fj(τj). Yet each fj(τj) can be any function whatever, which provides a great deal of

flexibility. In typical factory applications, we are interested in conforming to the production
schedule as closely as possible. Thus we might define fj(τj) = pj(τj −Rj), where pj(t) is any
penalty function of the tardiness t we may wish to use, linear or nonlinear, continuous or
discontinuous. If we wish to minimize makespan, we can let task n be a dummy task that is
constrained to follow all others, and set fn(τn) = τn and fj(τj) = 0 for j = 1, . . . , n− 1.

4. Canonical Trajectories
Optimal control of the cranes is much easier to calculate when it is recognized that only
certain trajectories need be considered, namely those we call canonical trajectories. We will
show that when there are two cranes, some pair of canonical trajectories is optimal. This
substantially reduces the number of state transitions that must be enumerated and makes
a dynamic programming approach computationally practical for this problem.
Let a processing schedule for a given crane consist of the vector τ of task start times.

We define the extremal trajectory with respect to τ for the left crane to be one that moves
to the right as late as possible, and moves to the left as early as possible (Figure 1). The
extremal trajectory for the right crane moves to the left as late as possible and to the right
as early as possible.
More precisely, if Lj ≤Lj+1, the extremal trajectory for the left crane for t∈ [τj , τj+1] is

given by

x̄1t =

{
Lj for t∈ [τj , Tj]

Lj + v(t−Tj) for t∈ [Tj , τj+1],

where Tj = τj+1 − (Lj+1 −Lj)/v. If Lj >Lj+1, it is given by

x̄1t =

Lj for t∈ [τj , τj +Pj]

Lj + v(t− τj −Pj) for t∈ [τj +Pj , T
′
j]

Lj+1 for t∈ [T ′
j , τj+1],

where T ′
j = τj +Pj +(Lj+1 −Lj)/v.

A trajectory for the left crane is canonical with respect to the right crane if at each
moment it is the leftmost of the left crane’s extremal trajectory and the right crane’s
actual trajectory, allowing for separation ∆ (Figure 2). More precisely, trajectory x′

1 is
canonical for the left crane, with respect to trajectory x2 for the right crane, if x′

1(t) =
min{x̄1(t), x2(t)−∆} at each time t. Similarly, trajectory x′

2(t) is canonical for the right
crane if x′

2(t) =max{x̄2(t), x1(t)+∆}. Finally, a pair of trajectories is canonical if the tra-
jectories are canonical with respect to each other.

Theorem 1. If the two-crane problem (1) has an optimal solution, then some optimal pair
of trajectories is canonical.

Aron et al.: Factory Crane Scheduling
98 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure 2. Canonical trajectory for the left crane (leftmost solid line).

At each moment, follow
extremal trajectory or right

crane’s trajectory, whichever
is further to the left

Right craneLeft crane

Depart from
extremal
trajectory

Proof. The idea of the proof is to replace the left crane’s optimal trajectory with a canonical
trajectory with respect to the right crane’s optimal trajectory. Then assign the right crane a
canonical trajectory with respect to the left crane’s new trajectory, and assign the left crane
a canonical trajectory with respect to the right crane’s new trajectory. At this point it is
shown that the trajectories are canonical with respect to each other. We will see that these
replacements can be made without changing the objective function value, which means the
canonical trajectories are optimal, and the theorem follows.
Thus let x∗ = (x∗

1, x
∗
2) be a pair of optimal trajectories for a two-crane problem. Let

x̄1, x̄2 be extremal trajectories for the left and right cranes with respect to the processing
schedules in the optimal trajectories. By definition, the extremal trajectories have the same
processing schedules as the original trajectories.
Consider the canonical trajectory x′

1 for the left crane with respect to x
∗
2, which is given by

x′
1(t) =min{x̄1(t), x∗

2(t)−∆}. We claim that (x′
1, x

∗
2) is optimal. First note that x̄1(t) = x∗

1(t)
if the left crane is processing at time t, by definition of x̄1. Thus x̄1(t) = x∗

1(t)≤ x∗
2(t)−∆ for

all such t, because x∗
1, x

∗
2 is a feasible schedule. This implies that x

′
1(t) = x

∗
1(t) at all times t

when the left crane is processing. The left crane can therefore retain its original processing
schedule. Because the objective function value does not change, (x′

1, x
∗
2) is optimal if it is

feasible.
Furthermore, (x′

1, x
∗
2) is feasible because the cranes do not interfere with each other, and

the speed of the left crane is never greater than v. The cranes do not interfere with each
other because x′

1(t)≤ x∗
2(t)−∆ for all t, from the defintion of x′

1(t). To show that the speed
of the left crane is never more than v it suffices to show that the average speed in the left-
to-right direction between any pair of time points t1, t2 is never more than v, and similarly
for the average speed in the right-to-left direction. The former is

x′
1(t2)−x′

1(t1)
t2 − t1 =

min{x̄1(t2), x∗
2(t2)−∆} −min{x̄1(t1), x∗

1(t1)−∆}
t2 − t1

≤ max
{
x̄1(t2)− x̄1(t1)

t2 − t1 ,
x∗

2(t2)−x∗
2(t1)

t2 − t1

}
≤ v

where the first inequality is due to the fact that

min{a, b} −min{c, d} ≤max{a− c, b− d}
for any a, b, c, d, and the second inequality due to the fact that x̄1 and x∗

2 are feasible
trajectories. The speed in the right-to-left direction is similarly bounded.
Now consider the canonical trajectory x′

2 for the right crane with respect to x
′
1, given by

x′
2(t) =max{x̄2(t), x′

1(t)+∆}. It can be shown as above that the right crane can retain its
processing schedule, and (x′

1, x
′
2) is therefore optimal.

Aron et al.: Factory Crane Scheduling
12th INFORMS Computing Society Conference, c© 2011 INFORMS 99

Finally, let x′′
1 be the canonical trajectory for the left crane with respect to x

′
2, given by

x′′
1(t) =min{x̄1(t), x′

2(t)−∆}. Again (x′′
1 , x

′
2) is optimal. Since x

′′
1 is canonical with respect

to x′
2, to prove the theorem it suffices to show that x′

2 is canonical with respect to x
′′
1 ; that is,

max{x̄2(t), x′′
1(t)+∆}= x′

2(t) for all t. To show this we consider four cases for each time t.
Case 1. x̄1(t)+∆≤ x̄2(t). We first show that

(x′′
1(t), x

′
2(t)) = (x̄1(t), x̄2(t)). (2)

Because x′
1(t) =min{x̄1(t), x∗

2(t)−∆}, x′
1(t) is equal to x̄1(t) or x∗

2(t)−∆. In the latter case,
we have

x′
2(t) =max{x̄2(t), x′

1(t)+∆}=max{x̄2(t), x∗
2(t)}= x̄2(t),

and
x′′

1(t) =min{x̄1, x
′
2(t)−∆}=min{x̄1, x̄2(t)−∆}= x̄1(t).

If, on the other hand, x′
1(t) = x̄1(t), we have x′

2(t) =max{x̄2(t), x̄1(t)+∆}= x̄2(t) and again
x′′

1(t) = x̄1(t). Now from (2) we have

max{x̄2(t), x′′
1(t)+∆}=max{x̄2(t), x̄1(t)+∆}= x̄2(t) = x′

2(t)

as claimed.
The remaining cases suppose x̄2(t)< x̄1(t)+∆ and consider the situations in which x∗

2(t)
is less than or equal to x̄2(t), between x̄2(t) and x̄1(t)+∆, and greater than x̄1(t)+∆.

Case 2. x∗
2(t)≤ x̄2(t)< x̄1(t)+∆. It can be checked that (x′′

1(t), x
′
2(t)) = (x̄2(t)−∆, x̄2(t))

and max{x̄2(t), x′′
1(t)+∆}=max{x̄2(t), x̄2(t)}= x̄2(t) = x′

2(t), as claimed.
Case 3. x̄2(t)<x∗

2(t)≤ x̄1(t)+∆. Here (x′′
1(t), x

′
2(t)) = (x

∗
2(t)−∆, x∗

2(t)) and max{x̄2(t),
x′′

1(t)+∆}=max{x̄2(t), x∗
2(t)}= x∗

2(t) = x
′
2(t).

Case 4. x̄2(t)< x̄1(t)+∆<x∗
2(t). Here (x

′′
1(t), x

′
2(t)) = (x̄1(t), x̄1(t)+∆) and max{x̄2(t),

x′′
1(t)+∆}=max{x̄2(t), x̄1(t)+∆}= x̄1(t)+∆= x′

2(t). This completes the proof.
The properties of canonical trajectories allow us to consider a very restricted subset of

trajectories when computing the optimum.

Corollary 1. If the two-crane problem has an optimal solution, then there is an optimal
solution with the following characteristics:
(a) While not processing a task, the left (right) crane is never to the right (left) of both

the previous and the next stop.
(b) While not processing a task, the left (right) crane is moving in a direction toward its

next stop if it is to the right (left) of the previous or next stop.
(c) A crane never moves in the direction away from its next stop unless it is adjacent to

the other crane at all times during such motion.
(d) While not processing a task, the left (right) crane can be stationary only if it is (i) at

the previous or the next stop, whichever is further to the left (right), or (ii) adjacent to the
other crane.

Proof. (a) If crane 1 (the left crane) is to the right of both its previous and next stop
at some time t, then x1(t) > x̄1(t). This is impossible in a canonical trajectory, in which
x1(t) =min{x̄1(t), x2(t)−∆}. The argument is similar for crane 2.
(b) Suppose crane 1 is to the right of its previous stop. Due to (a), it is not to the right

of its next stop, which must therefore be to the right of the previous stop. We cannot have
x1(t)> x̄1(t) as in (a), and we cannot have x1(t)< x̄1(t), since this means the crane cannot
reach its next stop in time. So crane 1 is on its canonical trajectory, which means that it is
moving toward its next stop. The argument is similar if crane is to the right of the next stop.

Aron et al.: Factory Crane Scheduling
100 12th INFORMS Computing Society Conference, c© 2011 INFORMS

(c) From (a) and (b), at a given time t crane 1 can be moving in the direction opposite
its next stop only if it is at or to the left of both the previous and next stops. This means
that it will be to the left of both at time t+∆t, so that x1(t+∆t)< x̄1(t+∆t). But since

x1(t+∆t) =min{x̄1(t+∆t), x2(t+∆t)−∆},

this means x1(t+∆t) = x2(t+∆t)−∆, and crane 1 is adjacent to the other crane. Since
crane 1 is moving left between t and t+∆t, it must be adjacent to the other crane at time t
as well.
(d) From (a) and (b), a stationary crane 1 must be at or to the left both the previous

and the next stop. If it is at one of them, then (i) applies. If it is to the left of both, then
x1(t)< x̄1(t), which again implies that x1(t) = x2(t)−∆, and (ii) holds.

5. Dynamic Programming Recursion
The optimal control problem for the cranes is not simply a matter of computing an optimal
space-time trajectory. It is complicated by three factors: (a) each crane must perform tasks
in a certain order; (b) each task must be performed at a certain location for a certain amount
of time; and (c) the cranes must not interfere with each other. Dynamic programming has
the flexibility to deal with these and other constraints while preserving optimality (up to the
precision allowed by the space and time granularity). The drawback is a potentially exploding
state space, but we will show how to keep it under control for problems of reasonable size.
To simplify notation, we assume from here out that ∆t= 1.
There are three state variables for each crane. One is the crane location xct as defined in

model (1). The second is the task yct assigned to crane c at time t. This the task currently
being processed, or if the crane is not currently processing, the next task to be processd by
crane c. This differs from yct in the model (1) in that we no longer set yct = 0 when crane c
is not processing. The third state variable is

uct =
{
amount of time crane c will have been processing at time t+1
(0 if the crane is neither processing nor starts processing at time t).

In principle the recursion is straightforward, although a practical implementation requires
careful management of state transitions and data structures. Let xt = (x1t, x2t), and similarly
for yt and ut. Also let zt = (xt, yt, ut). It is convenient to use a forward recursion:

gt+1(zt+1) = min
zt∈S−1(zt+1)

{h(t, yt, ut)+ gt(zt)}, (3)

where gt(zt) is the cost of an optimal trajectory between the initial state and state zt at
time t, h(t, yt, ut) is the cost incurred at time t, and S−1(zt+1) is the set of states at time t
from which the system can move to state zt+1 at time t+1.
Because the objective function is f(τ) =

∑
j fj(τj) as specified earlier, we incur cost fj(t)

when the crane c assigned task j starts task j at time t (i.e., yct = j and uct = 1). Thus
h(t, yt, ut) =

∑
c hc(t, yt, ut), where

hc(t, yt, ut) =
{
fyct(t) if uct = 1,
0 otherwise.

The boundary condition is g0(z0) = 0, where z0 is the initial state. The optimal cost is
gTmax(zTmax), where zTmax is the desired terminal state.
The possible state transitions are restricted by the rules in Corollary 1. This allows us

to exclude states from S−1(zt+1) and therefore reduce computation. Rule (a), for example,
prevents the left crane from moving to the right if this would put it to the right of both
the current and the next stop. Let y′ be the stop that precedes stop y1, t+1 in the list of

Aron et al.: Factory Crane Scheduling
12th INFORMS Computing Society Conference, c© 2011 INFORMS 101

stops assigned to the left crane (crane 1). If x1, t+1 =max{Ly1, t+1 ,Ly′} in state zt+1, then
x1t cannot be equal to x1, t+1 +1 in any state belonging to S−1(zt+1), because this would
mean that the left crane was to the right of both its previous and next stop. The reasoning
is similar for the right crane.
Rule (b) of the corollary requires the left crane to move toward its next stop if it is to

the right of the previous or next stop. This means that if x1, t+1 ≥Ly′ and x1, t+1 <Ly1, t+1 ,
then x1t cannot be equal to x1, t+1 + 1 in any state belonging to S−1(zt+1), because this
would mean that the crane failed to move toward its next stop even though it was to the
right of its previous stop. Similarly, if x1, t+1 ≤Ly′ and x1, t+1 >Ly1, t+1 , then x1t cannot be
equal to x1, t+1 − 1 in any state belonging to S−1(zt+1), because this would mean that the
crane failed to move toward its next stop even though it was to the right of its next stop.
Rules (c) and (d) of the corollary are similarly implemented.
By a suitable definition of S−1(zt+1), we can impose any additional constraint that can

be defined in terms of the current state and that is consistent with a canonical trajectory.
For example, we can require the crane c processing task j to start moving to the next task j′

as soon as processing is finished. This is possible because the state at time t tells us whether
crane c is processing task j (yct = j) and will be finished at time t+1 (uct = Pj). The set
S−1(zt+1) is again defined by formulating the constraint in reverse: if crane c is assigned
task j′ at time t+ 1 (yc, t+1 = j′) and is still in the same location as task j (xc, t+1 = Lj),
then there is no feasible predecessor for the current state (S−1(zt+1) =∅). Similarly, we can
prohibit crane c from yielding (moving away from its next stop) after it finishes processing
task j. A variety of precedence constraints can also be implemented. For example, we can
require that the right crane start processing task j′ only after the left crane finishes task j.
At any given time t, we can determine whether the left crane has finished task j by checking
whether y1t > j, and if so we allow the right crane to start task j′. Finally, we can impose
bounds on the processing time rather than specify it exactly, because state variable uct

indicates how long the current task has been processed so far.
For each state zt+1 the recursion (3) computes the minimum gt+1(zt+1) and the state

zt = s−1
t+1(zt+1) that achieves the minimum. Thus s−1

t+1(zt+1) points to the state that would
precede zt+1 in the optimal trajectory if zt+1 were in the optimal trajectory. For a basic
recursion, the cost table gt+1(·) is stored in memory until gt+2(·) is computed, and then
released (this is modified in the next section). Thus only two consecutive cost tables need be
stored in memory at any one time. The table s−1

t+1(·) of pointers is stored offline. Then if zT
is the final state, we can retrace the optimal solution in reverse order by reading the tables
s−1

t+1(·) into memory one at a time and setting zt = s−1
t+1(zt+1) for t=N − 1,N − 2, . . . ,0.

6. Reduction of the State Space
We can substantially reduce the size of the state space if we observe that in practical
problems, the cranes spend more time processing than moving. The typical processing time
for a state ranges from two to five minutes (sometimes much longer), while the typical
transit time to the next location is well under a minute. Furthermore, the state variables
representing location and task assignment (xct and yct) cannot change while the crane is
processing.
These facts suggests that the processing time state variable uct should be replaced by

an interval Uct = [ulo
ct, u

hi
ct] = {ulo

ct, u
lo
ct + 1, . . . , u

hi
ct} of consecutive processing times, where

ulo
ct ≥ 0 and uhi

ct ≤ Pyct
. A single “state” (xt, yt,Uct) = (xt, yt, (U1t,U2t)) now represents a set

of states, namely the Cartesian product

{(xt, yt, (i, j)) | i∈U1t, j ∈U2t}.
The possible state transitions for either crane c are shown in Table 1. The transitions in

the table are feasible only if they satisfy other constraints in the problem, including those

Aron et al.: Factory Crane Scheduling
102 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Table 1. Possible state transitions for crane c using an interval-valued state variable for processing
time.

State at time t State at time t+1

1. (xct, yct, [0,0]) (x′, yct, [0,0])1 or (x′, yct, [0,1])1,2 or (x′, yct, [1,1])1,2,3

2. (xct, yct, [0, u2])4 (xct, yct, [0, u2 +1]) or (xct, yct, [1, u2 +1])2,4

3. (xct, yct, [0, Pyct]) (xct, yct, [0, Pyct]) or (xct, yct, [1, Pyct])
3 or

(xct, y
′, [0,0])5 or (xct, y

′, [0,1])2,5 or (xct, y
′, [1,1])2,3,5

4. (xct, yct, [u1, u2])4,6 (xct, yct, [u1 +1, u2 +1])
5. (xct, yct, [u1, Pyct])

6 (xct, yct, [u1 +1, Pyct]) or
(xct, y

′, [0,0])5 or (xct, y
′, [0,1])2,5 or (xct, y

′, [1,1])2,3,5

1The next location x′ is xct − 1, xct, or xct+1.
2This transition is possible only if task yct processes at location x′.
3This transition is possible only if task yct can start no later than time t+1.
4Here 0< u2 < Pyct .
5Task y′ is the task that follows task yct on crane c.
6Here u1 > 0.

based on time windows, the physical length of the track, and interactions with the other
crane. The transitions can be explained, line by line, as follows:
(1) Because the processing time interval is the singleton [0,0], the crane can be in motion

and can in particular move to either adjacent location. When it arrives at the next location,
the currently assigned task can start processing if the crane is in the correct position, in
which case the state interval is Uct = [0,1] to represent two possible states: one in which the
task does not start processing at time t+1, and one in which it does (the interval is [1,1] if
the deadline forces the task to start processing at t+1). If the crane is in the wrong location
for the task, the state remains [0,0].
(2) None of the states in the interval [0, u2] allow processing to finish at time t+ 1. So

all of the processing time states advance by one—except possibly the zero state, in which
processing has not yet started and can be delayed yet again if the deadline permits it.
(3) The last state in the interval [0, Pyct

] allows processing to finish at time t+1. This state
splits off from the interval and assumes one of the processing state intervals in line 1. The
other states evolve as in line 2.
(4) Because the task is underway in all states, all processing times advance by one.
(5) This is similar to line 3 except that there is no zero state.
There is no need to store a pointer s−1

t+1(xt, yt, (i, j)) for every state (xt, yt, (i, j)) in
(xt, yt,Ut). This is because when uct ≥ 2, the state of crane c preceding (xct, yct, uct) must
be (xct, yct, uct − 1). Thus we store s−1

t+1(xt, yt, (i, j)) only when i≤ 1 or j ≤ 1.
However, we must store the cost gt+1(xt, yt, (i, j)) for every (i, j), because it is potentially

different for every (i, j). Fortunately, it is not necessary to update this entire table at each
time period, because most of the costs evolve in a predictable fashion. If i, j ≥ 2, then

gt+1
(
xy, yt, (i, j)

)
= gt

(
xt, yt, (i− 1, j− 1)).

So for each pair of tasks (y, y′) we maintain a two-dimensional circular queue Qyy′(·, ·) in
which the cost

gt+1((Ly,Ly′), (y, y′), (i, j)) (4)

for i, j ≥ 2 is stored at location
Qyy′

(
(t+ i− 2) mod M, (t+ j− 2) mod M)

,

where M is the size of the array Qyy′(·, ·) (i.e., the longest possible processing time). In
each period we insert the cost (4) into Q only for pairs (i, j) in which i = 2 or j = 2;
the costs for other pairs with i, j ≥ 2 were computed in previous periods. Thus only one

Aron et al.: Factory Crane Scheduling
12th INFORMS Computing Society Conference, c© 2011 INFORMS 103

row and one column of the Q array are altered in each time period, which substantially
reduces computation time. When i ≤ 1 or j ≤ 1, the cost (4) is stored as a table entry
gt+1(xt, yt, (i, j)) that is updated at every time period, as with pointers.
The array Qyy′(·, ·) is created when the state ((Ly,Ly′), (y, y′), (i, j)) is first encountered

with i, j ≥ 2. The array is kept in memory over multiple periods until it is no longer updated,
at which time it is deleted.

7. Experimental Results
We report computational tests on a representative problem that is based on an actual
industry scheduling scenario. There are 60 jobs, of which four jobs consist of one task, eleven
consist of two tasks, and 45 consist of three tasks, for a total of 161 tasks. We obtain smaller
instances by scheduling only some of the jobs, namely the first ten (in order of release time),
the first twenty, and so forth. Results on other problems we have examined are similar. In
particular, we found that the computation time depends primarily on the width of the time
windows, regardless of the problem solved.
Release times were obtained from the production schedule, but no deadlines were given.

Because of the sensitivity of computation time to time windows, we initially set the deadline
of each job to be 40 minutes after each release time, with the expectation that these may
have to be relaxed to obtain a feasible solution.
We divided the 108.5-meter track into ten equal segments, so that each distance unit

represents 10.85 meters. Each crane can traverse the length of the track in about one minute.
Because we want the crane to move one distance unit for each time unit, we set the time
unit at six seconds. The 60-job schedule requires about four hours to complete, which means
that the dynamic programming procedure has about Tmax = 2,400 time stages.
Table 2 shows computation times obtained on a desktop PC running Windows XP with

a Pentium D processor 820 (2.8 GHz). The assignment and sequencing of jobs used in each
instance is the best one that was obtained by a heuristic procedure. Feasible solutions were
found for all the instances except the full 60-job problem. To obtain a feasible solution
of this problem, we enlarged the time windows from 40 to 95 minutes by postponing the
deadlines. This illustrates the combinatorial nature of the problem, because the addition
of only ten jobs created new bottlenecks that delayed at least one job nearly 95 minutes
beyond its release time. Wider time windows result in a larger state space and thus greater
computation time. Nonetheless, the 60-job problem with 95-minute windows was solved in
well under a minute.
The optimal trajectories for two selected instances appear in Figures 3 and 4. The horizon-

tal axis represents distance along the track in 10.85-meter units. The vertical axis represents
time in 6-second units. Thus the schedule for the 30-job problem spans about 1,350 time
units, or 135 minutes. The space-time trajectory of the left crane appears as a solid line, and
as a dashed line for the right crane. The left crane begins and ends at the leftmost position,

Table 2. Computational results for subsets
of the 60-job problem.

Time window Computation
Jobs (mins) time (sec)

10 40 6.8
20 40 7.6
30 40 15.8
40 40 16.7
50 40 18.8
60 95 48.1

Aron et al.: Factory Crane Scheduling
104 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure 3. Optimal solution of the 10-job instance.

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10

“Output/solution-time-LEFT.out”
“Output/solution-time-RIGHT.out”

and analogously for the right crane. Note that the cranes are at rest most of the time. The
trajectories are canonical trajectories as defined above, which ensures a certain consistency
in the way the two cranes interact.
The number of states was always less than 500 for the 10-job instance, less than 1,000

for 30 jobs, and less than 2,000 for 60 jobs—even though the theoretical maximum is astro-
nomical. Figure 5 tracks the evolution of state space size over time for the 60-job problem.

Figure 4. Optimal solution of the 30-job instance.

0

200

400

600

800

1,000

1,200

1,400

1,600

0 2 4 6 8 10

“Output/solution-time-LEFT.out”
“Output/solution-time-RIGHT.out”

Aron et al.: Factory Crane Scheduling
12th INFORMS Computing Society Conference, c© 2011 INFORMS 105

Figure 5. Evolution of the state space size for the 60-job instance.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

0 500 1,000 1,500 2,000 2,500

“Output/state count.out”

The horizontal axis corresponds to time stages, which again are separated by six seconds.
The vertical axis is the number of states at each time stage.
Typically, only a few time windows must be wide to allow a feasible solution, because only

a few jobs must be delayed. Yet it is difficult or impossible to predict which are the critical
jobs. It is therefore necessary to be able to solve problems in which all of the time windows
are wide, perhaps on the order of 90 minutes as in the 60-job instance. It was to accommodate
wide time windows that we developed the state space reduction techniques of §6.
Table 3 reveals the critical importance of these techniques. For each of the three problem

instances, the table shows the average time and state space size required to compute the opti-
mal trajectories for ten different job assignments and sequencings. Without the state space
reduction technique, the dynamic programming algorithm could scale up to only 30 jobs,
and even then only for narrow time windows. The time windows were reduced to make the
problem tractable without state space reduction, while still maintaining feasibility. State
space reduction cuts the peak number of states, and therefore the memory requirements, by
a factor of 20 or more. It reduces the computation time by a factor of ten. The advantage
is doubtless even greater for larger instances.

Table 3. Effect of state space reduction on state space size and computation time.

Average number Peak number Average
of states of states time (sec)

Time window
Jobs (min) Before After Before After Before After

10 25 3,224 139 9,477 465 15.8 2.0
20 35 3,200 144 22,204 927 82.6 8.6
30 35 3,204 216 22,204 940 143.8 15.0

Notes. Each instance is solved for 10 different jobs assignments and sequencings. “Before” and
“After” refer to results before and after state space reduction, respectively.

Aron et al.: Factory Crane Scheduling
106 12th INFORMS Computing Society Conference, c© 2011 INFORMS

8. Conclusions and Future Research
We presented a specialized dynamic programming algorithm that computes optimal space-
time trajectories for two interacting factory cranes. The state space is economically repre-
sented in such a way that medium-sized problems can be solved to optimality. The technique
is useful both for solving a significant number of practical problems and as a benchmarking
and calibration tool for heuristic methods that solve larger problems. The dynamic pro-
gramming model accommodates a wide variety of constraints that often arise in this type
of problem.
We also proved structural theorems to show that only certain types of trajectories need be

considered to obtain an optimal solution. This not only accelerates solution of the problem
but simplifies the operation of the cranes by restricting their movements to certain patterns.
An obvious direction for future research is to attempt to generalize the structural results

to three or more cranes. Another useful research program would be a systematic empirical
comparison of heuristic methods with the exact algorithm described here to determine how
best to design and tune a heuristic algorithm.

References
[1] R. Armstrong, L. Lei, and S. Gu. A bounding scheme for deriving the minimal cycle time

of a single-transporter N -stage process with time-window constraints. European Journal of
Operational Research 78:130–140, 1994.

[2] A. Che and C. Chu. Single-track multi-hoist scheduling problem: A collision-free resolution
based on a branch-and-bound approach. International Journal of Production Research 42:
2435–2456, 2004.

[3] C. F. Daganzo. The crane scheduling problem. Transportation Research Part B 23:159–175,
1989.

[4] K. H. Kim and Y.-M. Park. A crane scheduling method for port container terminals. European
Journal of Operational Research 156:752–768, 2004.

[5] L. Lei and T. J. Wang. A proof: The cyclic hoist scheduling problem is NP-complete. Working
paper, Rutgers University, New Brunswick, NJ, 1989.

[6] L. Lei and T. J. Wang. The minimum common-cycle algorithm for cycle scheduling of two
material handling hoists with time window constraints. Management Science 37:1629–1639,
1991.

[7] L. Lei, R. Armstrong, and S. Gu. Minimizing the fleet size with dependent time-window and
single-track constraints. Operations Research Letters 14:91–98, 1993.

[8] J. Leung and E. Levner. An efficient algorithm for multi-hoist cyclic scheduling with fixed
processing times. Operations Research Letters 34:465–472, 2006.

[9] J. Leung and G. Zhang. Optimal cyclic scheduling for printed circuit board production lines
with multiple hoists and general processing sequence. IEEE Transactions on Robotics and
Automation 19:480–484, 2003.

[10] J. M. Y. Leung, G. Zhang, X. Yang, R. Mak, and K. Lam. Optimal cyclic multi-hoist scheduling:
A mixed integer programming approach. Operations Research 52:965–976, 2004.

[11] R. W. Lieberman and I. B. Turksen. Two operation crane scheduling problems. IIE Transac-
tions 14:147–155, 1982.

[12] J. Liu, Y. Jiang, and Z. Zhou. Cyclic scheduling of a single hoist in extended electroplating
lines: A comprehensive integer programming solution. IIE Transactions 34:905–914, 2002.

[13] M.-A. Manier and C. Bloch. A classification for hoist schedling problems. International Journal
of Flexible Manufacturing Systems 15:37–55, 2003.

[14] M.-A. Manier, C. Varnier, and P. Baptiste. Constraint-base model for the cyclic multi-hoists
scheduling problem. Production Planning and Control 11:244–257, 2000.

[15] L. Mocchia, J.-F. Cordeau, M. Gaudioso, and G. Laporte. A branch-and-cut algorithm for
the quay crane scheduling problem in a container terminal. Naval Research Logistics 53:45–59,
2005.

[16] W. C. Ng. Crane scheduling in container yards with inter-crane interference. European Journal
of Operational Research 164:64–78, 2005.

Aron et al.: Factory Crane Scheduling
12th INFORMS Computing Society Conference, c© 2011 INFORMS 107

[17] L. W. Phillips and P. S. Unger. Mathematical programming solution of a hoist scheduling
problem. AIIE Transactions 8:219–321, 1976.

[18] D. Riera and N. Yorke-Smith. An improved hybrid model for the generic hoist scheduling
problem. Annals of Operations Research 115:173–191, 2002.

[19] R. Rodošek and M. Wallace. A generic model and hybrid algorithm for hoist scheduling prob-
lems. M. Maher and J.-F. Puget, eds. Principle and Practice of Constraint Programming
(CP 1998), Vol. 1520. Springer, Berlin, 385–399, 1998.

[20] C. Varnier, A. Bachelu, and P. Baptiste. Resolution of the cyclic multi-hoists scheduling prob-
lem with overlapping partitions. INFOR 35:309–324, 1997.

[21] G. Yang, D. P. Ju, W. M. Zheng, and K. Lam. Solving multiple hoist scheduling problems by
use of simulated annealing. Transportation Research Part B 36:537–555, 2001.

[22] C. Zhang, Y.-W. Wan, J. Liu, and R. J. Linn. Dynamic crane deployment in container storage
yards. Ruan Jian Xue Bao (Journal of Software) 12:11–17, 2002.

[23] Z. Zhou and L. Li. A solution for cyclic scheduling of multi-hoists without overlapping. Annals
of Operations Research 168:5–21, 2009.

