
ICS 2011
12th INFORMS Computing Society Conference Computing Society

c© 2011 INFORMS | isbn 978-0-9843378-1-1
doi 10.1287/ics.2011.0007

Special Case Studies of the Stochastic p-Hub
Center Single Allocation Problem with Service
Constraints

Li Zhang
Department of Mathematics and Computer Science, The Citadel,
Charleston, South Carolina 29409, li.zhang@citadel.edu

Abstract In time-sensitive distribution systems, one crucial factor to consider is how to keep the
delivery time between any origin and destination pair within a time guarantee. With
variability in travel or delivery, it is important to maintain the services at a certain
level such that the probability of on-time deliveries for all customers is high. In this
paper, we address the stochastic p-hub center single allocation problem with service
constraints and the assumption that the standard deviation of the travel time between
any origin and destination pair is proportional to the mean travel time between them.
We propose a mixed integer formulation for the problem and discuss several polyno-
mial solvable cases to the problem.
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1. Introduction
Hubs are often used in networks such as air passenger travel, postal services, express ship-
ments, and distributed computer systems. These systems usually serve a large number of
customers or end users. For example, UPS delivered 3.8 billion packages and documents in
2009 (15.1 million daily) and had a revenue of $37.9 billion in 2009 (UPS Pressroom [18]).
In these networks, direct connections linking all pairs of origin-destination (o-d) nodes can
be extremely expensive and impractical. Hubs are special facilities usually used to serve as
consolidation, switching and sorting centers, thus direct connections are replaced by fewer,
indirect connections. The hub-and-spoke network applications have significantly reduced the
start-up, operating and maintenance costs. In UPS’ case, six hubs were used to serve 388
airports domestically in 2009 (UPS Pressroom [18]).
In the literature, hub location problems focus on determining the locations of the hubs

and allocations of the nonhub nodes to the hub nodes. There are two objectives that have
been considered the most: minimizing the sum of the total transportation cost (time, dis-
tance, etc.) and minimizing the maximum transportation cost between any o–d pair. If the
number of hubs to be located is equal to a predetermined number p, the problem is called
the p-hub median problem with the first objective (i.e., find the locations of the p hubs and
allocate the nonhub nodes to the p hubs such that the total cost is minimized), and the
problem is called the p-hub center problem with the second objective (i.e., find the locations
of the p hubs and allocate the nonhub nodes to the p hubs such that the maximum travel cost
between any o-d pair is minimized). There are several variants to both problems depending
on how the nonhub nodes are allocated to the hub nodes. Single allocation requires a non-
hub node to be assigned to one and only one hub node, and multiple allocation requires a
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nonhub node to be assigned to one or more hub nodes. More details about the hub location
problems can be found in the survey papers (Alumur and Kara [1], Bryan and O’Kelly [2],
Campbell [5], Klincewicz [10]).
In a hub-and-spoke network application, the p-hub center (single or multiple allocation)

problem determines the locations of the p hub nodes and allocations of the nonhub nodes
to the p hub nodes such that the maximum cost (distance, time, etc.) between any o-d pair
is minimized. This problem is important for a system that delivers time-sensitive items or
services, such as express mail services at UPS or FedEx and emergency services at hospitals
or fire stations. In these systems, the maximum travel time between any o-d pair represents
the best time guarantee that can be offered to all customers, and this value must be kept
as low as possible. Like the p-hub median problem, the p-hub center problem in general
is NP-hard (both problems remain NP-hard even if hub locations are fixed) Campbell [5],
Ernst et al. [7], Kara and Tansel [9], Sohn and Park [14]. Only in special cases such as p= 2
or on special graphs, these problems can be solved polynomially (Campbell et al. [4], Sohn
and Park [13]).
Since the actual transportation or delivery time from an origin to a destination is often

uncertain (instead of a constant as assumed in the p-hub location problems), it would be
more applicable to real world situations if we consider this factor in our model. If the
transportation time between any o-d pair is a random variable, it is possible that a plane
may not arrive on time or a package may not be delivered on time. To reduce the number of
failures of on-time delivery and the compensation amount due to these failures, companies
may insist on achieving a minimum service level. While the p-hub center problem received
some limited research attention in literature, there is only one published article on the
stochastic p-hub center problem by Sim et al. [12]. In their paper, the authors present a
mixed-integer formulation for the stochastic p-hub center single allocation problem with
service constraints and propose three heuristic methods to solve the problem. They also
provide the results from their computational experiments.
In this paper, we focus on a special case of the stochastic p-hub center single allocation

problem with service constraints, where the standard deviation of the travel time between
any pair of o-d nodes is assumed to be proportional to the mean travel time between these
two nodes. In §2, we provide problem descriptions including assumptions made for the
problem and propose a mixed-integer formulation for the model. In §3, we analyze our model
and discuss several polynomial solvable cases. In §4, we summarize our results and explore
future research directions.

2. Problem Description and Model Formulation
Suppose a given complete network is described by the complete graph G = (N,E) with
node set N = {1, . . . , n} and undirected arc set E. The stochastic p-hub center problem with
service constraints is to locate the p hubs on G and allocate the nonhub nodes to the p hubs
such that the maximum travel time between any o-d pair is minimized for a given service
level γ. In practice, γ is usually chosen to be close to 1 such as 0.90 or 0.95. We will only
consider the single allocations of nonhub nodes to hub nodes in this paper. Since the flow
between every pair of hubs uses a rapid mode of transit as a result of economies of scale,
the travel time between every pair of hubs will be less than their corresponding travel time
when the rapid mode of transit is not used (i.e., the given travel time on the graph). This
can be modeled by a discount factor α (where 0≤ α≤ 1) which is a multiplier that reduces
the given travel time between hubs. See Figure 1 for a graphical illustration for the problem,
where each nonhub node is assigned to one hub and the mean travel time between a pair of
hubs is multiplied by α and the hub network is completely connected.
Similar to the assumptions made in the paper by Sim et al. [12], we assume that the travel

time Tij on arc (i, j) from i to j is a normally distributed random variable with mean tij
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Figure 1. A graphical illustration of the problem.
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and variance δ2ij , and the Tij values are independent random variables. Assume tij = tji,
tii = 0, and tij > 0 if i �= j, ∀ i, j ∈N . Also, in a solution network (where the nonhub nodes
are allocated to the hub nodes), we require that the unique path between any o-d pair with
the smallest number of hubs must be followed. Since the hubs are fully connected (i.e., they
form a complete network), this requirement implies that the number of hubs on any o-d
path is either one (if both of the o-d nodes are assigned to the same hub) or two (if the
o-d nodes are assigned to two different hubs). There is no need to make such assumption
in the p-hub center or median problems since the travel time values are assumed to satisfy
the triangular inequalities and the hubs are completely connected in a solution network,
thus it always costs less (or no more) on a path having at most two hubs than the path
having three or more hubs. In the stochastic p-hub center single allocation problem with
service constraints, we do not assume that the Tij values satisfy the triangular inequalities
and in fact the triangular inequalities are often violated due to random travel times being
independent. Thus, it is possible that a path having more than two hubs cost less than the
path having the same o-d pair and two hubs. See an example about this in Figure 2 in §4.
We use T̂ij to denote the travel time between an o-d pair i and j on a resulting network G′

in a solution. Note that there are no direct connections between any pair of nonhub nodes
on G′ since each nonhub node has to be assigned to a hub node in a solution. If nodes i and j
are nonhub nodes in a solution, and i is assigned to hub k and j is assigned to hub l, then the
path from i to j should be the path i→ k→ l→ j (from the requirement that an o-d path
should have the smallest number of hubs in a solution network), and T̂ij = Tik +αTkl +Tlj .
With the assumption that Tij ∼N(tij , δ2ij), ∀ i, j ∈N, and Tij values are independent, we
have T̂ij = Tik+αTkl+Tlj ∼N(tik+αtkl+ tlj , δ2ik+α

2δ2kl+δ
2
lj), i.e., T̂ij is a random variable

having normal distribution with mean tik +αtkl + tlj and variance δ2ik +α
2δ2kl + δ

2
lj .

To solve the stochastic p-hub center single allocation problem with service constraints,
Sim et al. [12] introduced a mixed-integer formulation having O(n4) constraints and O(n4)
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binary variables, and they claimed that CPLEX was only able to solve problems with n< 10.
The formulation is apparently not very useful in practice. In this paper, we make a further
assumption for the problem and assume δij is proportional to the mean tij , i.e., δij = λtij ,
∀ i, j ∈ N and λ is some nonnegative constant. This assumption is reasonable since the
standard deviation of the travel time from i to j is often bigger if the mean travel time from
i to j is longer (more unknown factors are involved during a longer period of time). Note
Sim et al. [12] did use this assumption in their numerical experiment for data testing, but
not in their model formulation. Also, some other examples of using the idea that assumes
the standard deviation or variance to be proportional to the mean to reduce the size of the
formulation can be found in Cai and Zhou [3], Jang and Klein [8], Sheikh et al. [11], Song
and Miller [15], Spoerl and Wood [16], Spurrell [17]. Under this assumption, we are able to
formulate the problem with O(n2) constraints and O(n2) binary variables. Note that if δij =
λtij , then T̂ij = Tik + αTkl + Tlj ∼N(tik + αtkl + tlj , δ2ik + α

2δ2kl + δ
2
lj) =N(tik + αtkl + tlj ,

λ2(t2ik +α
2t2kl + t

2
lj)).

Define Xik to be a binary variable that equals 1 if node i is allocated to hub k and 0
otherwise. If there is a hub at node k, then Xkk = 1. Let Z represent the maximum travel
time between any o-d pair, and our objective is to minimize the Z value for a given service
level γ. That is, the probability of any o-d pair having travel time less than or equal to Z
should be greater than or equal to γ, i.e., P (T̂ij ≤Z)≥ γ, ∀ i, j ∈N . Each of these constraints
is called a chance constraint for the travel time on the path from origin i to destination j.
If Xik = 1 and Xjl = 1, then T̂ij = Tik +αTkl +Tlj ∼N(tik +αtkl + tlj , λ2(t2ik +α

2t2kl + t
2
lj)).

Now P (T̂ij ≤Z)≥ γ (the chance constraint on the path i→ k→ l→ j) can be expressed as

P

(
T̂ij − (tik +αtkl + tlj)

λ
√
(t2ik +α2t2kl + t

2
lj)

≤ Z − (tik +αtkl + tlj)

λ
√
(t2ik +α2t2kl + t

2
lj)

)
≥ γ,

i.e., (Z − (tik +αtkl + tlj))/λ
√
(t2ik +α2t2kl + t

2
lj) ≥ Zγ , where Zγ is the γ-level quantile in

the standard normal distribution such that P (Zs ≤Zγ) = γ (where Zs represents the stan-
dard normally distributed random variable). Since γ is close to 1, Zγ ≥ 0. We can rewrite
this chance constraint as Z ≥ tik +αtkl + tlj +Zγλ

√
t2ik +α2t2kl + t

2
lj . If Xik = 0 or Xjl = 0,

then the path i→ k→ l→ j does not exist in the solution network and Tik + αTkl + Tlj

should be multiplied by 0. Instead of using the four-indexed binary variable Yiklj to rep-
resent the existence of the path as in Sim et al. [12] which can increase the complexity of
the formulation dramatically, we use radius rk of a hub k in our formulation. The radius
concept was first proposed by Ernst et al. [7] in their study of the p-hub center prob-
lems. Let rk = max{tikXik, ∀ i ∈ N}, thus rk represents the maximum mean travel time
between hub k and the nonhub nodes that are assigned to it. Every o-d path in a solu-
tion network must contain at least one hub, and among all the o-d pairs where all origin
nodes are assigned to hub k and all destination nodes are assigned to hub l (k and l are
not necessarily different), the maximum value of tik +αtkl + tlj +Zγλ

√
t2ik +α2t2kl + t

2
lj is

rk + rl +αtkl +Zγλ
√
r2k +α2t2kl + r

2
l . Thus, we can express the chance constraints on Z as

in (2). Also, letM =max{tij , ∀ i, j ∈N}. Note thatM is a constant for a given network and
rk ≤M, ∀k ∈N . The formulation for the stochastic p-hub center single allocation problem
with service constraints and assumption that δij = λtij , ∀ i, j ∈N is as follows:

min Z (1)

subject to Z ≥ rk + rl +αtkl +Zγλ
√
r2k +α2t2kl + r

2
l , ∀k≤ l ∈N, (2)

rk ≥ tikXik, ∀ i, k ∈N, (3)

rk ≤MXkk, ∀k ∈N, (4)
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k∈N

Xik = 1, ∀ i∈N, (5)

Xik ≤Xkk, ∀ i, k ∈N, (6)∑
k∈N

Xkk = p, (7)

Xik ∈ {0,1}, ∀ i, k ∈N. (8)

The objective of minimizing the maximum travel time between any o-d pair satisfying a given
service level is expressed in (1) and (2), where constraints in (2) are the chance constraints
on Z as explained earlier. Notice that the right-hand side in constraint (2) is for ∀k≤ l ∈N
since tkl = tlk. Constraints (3) and (4) ensure that rk is the radius of k if k is a hub and rk
is 0 if k is a nonhub node (Note that since the objective is to minimize Z, constraint (4)
may be removed from the formulation to further reduce the size of the model. However, if
constraint (4) is removed, it is possible that a non-zero rk for a nonhub node k in an optimal
solution. Thus, constraint (4) can be used to tighten up the formulation). Constraint (5)
ensures that each node is assigned to one and only one hub node. Constraint (6) ensures
that node i can be assigned to node k if k is a hub node and no nodes can be assigned
to k if k is a nonhub node. Constraint (7) ensures that exactly p hubs are located. This
formulation has 5

2n
2 + 5

2n+1 constraints and n2 +n+1 variables of which n2 are binary. If
the condition δij = λtij , ∀ i, j ∈N is satisfied, this formulation is able to solve a problem of
much larger size than the formulation proposed by Sim et al. [12]. Note that Sim et al. [12]
also proposed a reduce-sized model in the case that a triangle inequality holds in a certain
stochastic dominance sense.

3. Polynomial Solvable Cases
Since the p-hub center single allocation problem is NP-hard in general (Campbell [5], Ernst
et al. [7], Kara and Tansel [9]), the problem we discuss in this paper is also NP-hard in
general. In fact, the p-hub center single allocation problem can be considered as a special case
of our problem where tij = dij (distance between i and j satisfying triangular inequality)
and δij = 0 (or λ = 0), ∀ i, j ∈ N . In this section we discuss several polynomial solvable
cases for the problem formulated in §2. Recall that the chance constraint for the travel time
on the path i→ k→ l→ j is Z ≥ tik +αtkl + tlj +Zγλ

√
t2ik +α2t2kl + t

2
lj . Let T̃ij equal the

right-hand side of the constraint (i.e., T̃ij = tik + αtkl + tlj + Zγλ
√
t2ik +α2t2kl + t

2
lj) for a

given allocation of the nonhub nodes to the p hub nodes where Xik =Xjl = 1. Notice that
T̃ij = T̃ji since tij = tji, ∀ i, j ∈N . Thus the problem is equivalent to locating the p hubs and
allocating the nonhub nodes to the p hubs such that Z =max{T̃ij , ∀ i, j ∈N} is minimized.

Theorem 1. Suppose tik ≥ ti′k and Xik = Xi′k = Xkk = 1, then T̃ij ≥ T̃i′j and T̃ji ≥
T̃ji′ , ∀ j ∈N .

Proof. Node j must be assigned to a hub node and suppose j is assigned to a hub node l, i.e.,
Xjl =Xll = 1, then T̃ij = tik +αtkl + tlj +Zγλ

√
t2ik +α2t2kl + t

2
lj and T̃i′j = ti′k +αtkl + tlj +

Zγλ
√
t2i′k +α2t2kl + t

2
lj . Since tik ≥ ti′k ≥ 0,

√
t2ik +α2t2kl + t

2
lj ≥

√
t2i′k +α2t2kl + t

2
lj . Also,

since Zγ ≥ 0 and λ ≥ 0, we have T̃ij ≥ T̃i′j . Since T̃ij = T̃ji and T̃i′j = T̃ji′ , we also have
T̃ji ≥ T̃ji′ . �
Corollary 1. Suppose node k is a hub and set K = {∀ i ∈ N | Xik = 1}. Then
max{T̃ij , ∀ i, j ∈K}= T̃i∗i∗ for some i∗ ∈K where ti∗k ≥ tik, ∀ i ∈K. Furthermore, T̃i∗i∗ =
T̃i∗j∗ for some j∗ ∈K iff tj∗k = ti∗k.
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Proof. Since ti∗k ≥ tik, ∀ i ∈ K, T̃i∗i∗ ≥ T̃ii∗ ≥ T̃ij , ∀ j ∈ K by Theorem 1. Thus,
max{T̃ij , ∀ i, j ∈K}= T̃i∗i∗ .
Assume tj∗k = ti∗k. We have T̃i∗j∗ = ti∗k + tj∗k + Zγλ

√
t2i∗k + t

2
j∗k = ti∗k + ti∗k

+Zγλ
√
t2i∗k + t

2
i∗k = T̃i∗i∗ .

Assume T̃i∗i∗ = T̃i∗j∗ . If i∗ = j∗, then tj∗k = ti∗k. Suppose i∗ �= j∗. If ti∗k > tj∗k, then
t2i∗k > t

2
j∗k since ti∗k > tj∗k ≥ 0. Also, T̃i∗i∗ = ti∗k + ti∗k + Zγλ

√
t2i∗k + t

2
i∗k > ti∗k + tj∗k +

Zγλ
√
t2i∗k + t

2
i∗k > ti∗k + tj∗k + Zγλ

√
t2i∗k + t

2
j∗k = T̃i∗j∗ , contrary to the assumption that

T̃i∗i∗ = T̃i∗j∗ . Similarly, ti∗k �< tj∗k. Thus, tj∗k = ti∗k. �

An allocation is said to be a feasible allocation for a given value T if T̃ij ≤ T , ∀ i, j ∈N .
Corollary 2. If there exists a feasible allocation for T = T̃i∗j∗ where both i∗ and j∗ are
assigned to the same hub k, then ti∗k = tj∗k and T = T̃i∗i∗ = T̃j∗j∗ .

Proof. Let set K = {∀ i ∈ N | Xik = 1}. Since T̃ij ≤ T, ∀ i, j ∈ N and T = T̃i∗j∗ for some
i∗ and j∗ in K, T =max{T̃ij , ∀ i, j ∈K}. Also, ti∗k ≥ tik, ∀ i ∈K (otherwise, if there is an
i ∈K such that tik > ti∗k, then T̃ij∗ > T̃i∗j∗ = T, contrary to the assumption that T̃ij ≤ T ,
∀ i, j ∈N). By Corollary 1, T = T̃i∗i∗ , and T = T̃i∗j∗ implies that ti∗k = tj∗k, therefore T =
T̃i∗i∗ = T̃j∗j∗ . �

Corollary 2 implies that if T = T̃i∗j∗ for some i∗ and j∗ in K and ti∗k �= tj∗k, then there
does not exist a feasible allocation for T .

3.1. Case p= 1
If k is the one hub node in a solution and ti∗k ≥ tik, ∀ i ∈ N , then by Corollary 1, Z =
T̃i∗i∗ = 2ti∗k +

√
2λZγti∗k = ti∗k(2+

√
2λZγ) for that solution. To minimize Z is equivalent

to minimize ti∗k. Thus, the problem becomes minimizing maximum tik, ∀ i, k ∈N and it is
similar to the vertex 1-center problem Daskin [6]. This can be done in at most O(n2) time
as shown in Algorithm 1.

Algorithm 1 (Case p= 1).
1. Let Z =∞ and hub = 0;
2. for (k= 1; k≤ n; k++){
3. let rk = 0;
4. for (i= 1; i≤ n; i++){
5. if (tik > rk)
6. let rk = tik;}
7. if (rk <Z)
8. let Z = rk and hub= k;}
9. for (i= 1; i≤ n; i++){
10. assign i to hub;}
11. return Z =Z(2+

√
2λZγ).

3.2. Case p= 2
The basic idea here is to find the optimal allocation of the nonhub nodes to a pair of
given hub nodes and the corresponding Z value (i.e., solving an allocation problem), then
compare this Z value to the Z value of which optimal allocation is found for a different
pair of given hub nodes. Since there are

(
n
2

)
= n(n− 1)/2 possible pairs of hub nodes, the

optimal solution to the problem can be found among these n(n− 1)/2 allocation problems
as shown in Algorithm 2. Next we discuss how to solve a specific allocation problem where
the locations of the two hubs are given.
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Suppose the two hubs are fixed at nodes k and l in an allocation problem. For any pair
of o-d nodes i and j in N , there are at most four possible paths from i to j: i→ k→ l→ j,
i→ k→ j, i→ l→ j, or i→ l→ k→ j. Each path corresponds to a T̃ij value for which a
feasible allocation may or may not exist. Corollary 1 and Corollary 2 imply that we should
only consider the T̃ij values for the following paths: i→ k→ l→ j (where i < j), i→ k→ i,
i→ l→ i, or i→ l→ k→ j (where i < j), for ∀ i, j ∈N . There are O(n2) such T̃ij values. The
optimal Z value for this allocation problem is among these values. Thus, we first compute
these T̃ij values and then perform a binary search on them to find Z. For a given T̃i∗j∗ value,
we retain information about the o-d path and assignments of o-d nodes i∗ and j∗ to the two
hub nodes. Also, we check if there exists an allocation for ∀ i ∈N as shown in Algorithm 2
(step 4 to step 18 in the procedure Allocation (k, l)). We will show in Theorem 2 that this
allocation is a feasible allocation for the given T̃i∗j∗ value (i.e., T̃ij ≤ T̃i∗j∗ , ∀ i, j ∈ N). If
such allocation exists, then we search for a smaller value, otherwise we search for a larger
one until we find the optimal Z for this allocation problem.

Algorithm 2 (Case p= 2).
1. let Z =∞, hub1 = 0 and hub2= 0;
2. for (k= 1; k≤ n; k++){
3. for (l= k+1; l≤ n; l++){
4. if Allocation (k, l)<Z
5. let Z = Allocation (k, l), hub1= k and hub2= l;}}
6. return Z.

Allocation (k, l)
1. Compute all candidate O(n2) T̃ij values and store them in set S.
2. Sort the values in S in an descending order.
3. Perform a binary search on the values in S {for a given T = T̃i∗j∗ :
4. if i∗ is assigned to hub k and j∗ and i∗ are the same node
5. let rk = ti∗k;
6. for (i= 1; i≤ n; i++){
7. if i can be assigned to k such that tik ≤ rk, then assign i to hub k;
8. else if i can be assigned to l such that T̃ii∗ ≤ T and T̃ii ≤ T , then assign i to hub l;
9. else break and go to step 3 for the next (bigger) value in the binary search};
10. if i∗ is assigned to hub l and j∗ and i∗ are the same node, repeat step 5 to step 9

and interchange k and l;
11. if i∗ is assigned to hub k and j∗ is assigned to hub l
12. let rk = ti∗k and rl = tj∗l;
13. if T̃i∗i∗ >T or T̃j∗j∗ >T, go to step 3 for the next (bigger) value in the binary search;
14. for (i= 1; i≤ n; i++){
15. if i can be assigned to k such that tik ≤ rk, then assign i to hub k;
16. else if i can be assigned to l such that til ≤ rl, then assign i to hub l;
17. else break and go to step 3 for the next (bigger) value in the binary search};
18. if i∗ is assigned to hub l and j∗ is assigned to hub k, repeat step 12 to step 17

and interchange k and l;
19. let Z = T and go to step 3 for the next (smaller) value in the binary search};
20. return the optimal Z value and the corresponding allocation of nonhub nodes

to the two hub nodes.

Theorem 2. For a given T = T̃i∗j∗ value, if for ∀ i∈N , i can be assigned to a hub node (k
or l) as described in the procedure Allocation (k, l) (step 4 to step 18), then the allocation is
a feasible allocation for T , i.e., T̃ij ≤ T , ∀ i, j ∈N.
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Proof. There are four possible cases regarding the allocation of i∗ and j∗ to the hub nodes
k and l: Xi∗k = 1 (step 4), Xi∗l = 1 (step 10), Xi∗k =Xj∗l = 1 (step 11), or Xi∗l =Xj∗k = 1
(step 18).

Case 1. Xi∗k = 1: We have rk = ti∗k. For ∀ i∈N, suppose i can be assigned to k such that
tik ≤ rk (step 7) or i can be assigned to l such that T̃ii∗ ≤ T and T̃ii ≤ T (step 8). Thus, for
∀ i, j ∈N,

(1) if both i and j are assigned to k, then by Corollary 1, T̃ij ≤ T̃i∗i∗ = T ;
(2) if i is assigned to k and j is assigned to l, then by Theorem 1, T̃ij = T̃ji ≤ T̃ji∗ ≤ T ;
(3) if i is assigned to l and j is assigned to k, similar arguments as in (2);
(4) if i is assigned to l and j is assigned to l, then T̃ij ≤max{T̃ii, T̃jj} ≤ T.

Case 2. Xi∗l = 1: use similar arguments as in Case 1.
Case 3. Xi∗k =Xj∗l = 1: We have rk = ti∗k, rl = tj∗l, T̃i∗i∗ ≤ T and T̃j∗j∗ ≤ T . For ∀ i∈N,

suppose i can be assigned to k such that tik ≤ rk (step 15) or i can be assigned to l such
that til ≤ rl (step 16 ). Thus, for ∀ i, j ∈N,

(1) if both i and j are assigned to k, then by Corollary 1, T̃ij ≤ T̃i∗i∗ ≤ T ;
(2) if i is assigned to k and j is assigned to l, then by Theorem 1, T̃ij ≤ T̃ij∗ ≤ T̃i∗j∗ = T ;
(3) if i is assigned to l and j is assigned to k, similar arguments as in (2);
(4) if i is assigned to l and j is assigned to l, then T̃ij ≤ T̃j∗j∗ ≤ T.

Case 4. Xi∗l =Xj∗k = 1: use similar arguments as in Case 3. �
In the procedure Allocation (k, l), step one takes O(n2) time and step two takes O(n2 logn)

time to sort the O(n2) values found in step 1. Steps 3 to 19 require O(n logn) time, thus
the total time requirement for procedure Allocation (k, l) is O(n2 logn), and the total time
requirement for Algorithm 2 is O(n4 logn).

3.3. Case α= 0 and p is a constant
If p is a constant, then there are

(
n
p

)
possible hub locations. We solve an allocation problem

for each given locations of the p hubs.

Theorem 3. Assume α= 0 in an allocation problem where the locations of the p hubs are
given. The optimal solution can be obtained by assigning all the nonhub nodes to their nearest
hubs.

Proof. Let H be the set consisting of the p given hubs. If α = 0, then T̃ij = tik + tjl +
Zγλ

√
t2ik + t

2
jl on the o-d path i → k → l → j for ∀ i, j ∈ N , ∀k, l ∈ H. If for some k∗

and l∗ in H such that tik∗ ≤ tik and tjl∗ ≤ tjl, ∀ i, j ∈ N , ∀k, l ∈ H, then tik∗ + tjl∗ +
Zγλ

√
t2ik∗ + t2jl∗ ≤ tik + tjl +Zγλ

√
t2ik + t

2
jl. Thus, Z =max{T̃ij , ∀ i, j ∈N} is minimized if

every nonhub node is assigned to its nearest hub. �
Since enumerating the locations of the p hubs takes O(np) time and assigning the nonhub

nodes to their nearest hubs takes O(n) time, the problem can be solved in O(np+1) time.

4. Summary
In this paper we discussed the stochastic p-hub center single allocation problem with service
constraints and assumption that δij = λtij , ∀ i, j ∈N . We proposed a mixed integer formu-
lation with 5

2n
2 + 5

2n+ 1 constraints and n2 + n+ 1 variables. If the condition δij = λtij ,
∀ i, j ∈ N is satisfied, this formulation can solve a much larger size problem compared to
the formulation proposed by Sim et al. [12]. Also, we studied some properties related to the
problem and discussed three polynomial solvable cases in §3.
One of the assumptions we made for the problem is that the unique path between any

o-d pair with the smallest number of hubs (either one or two) must be followed in a solution
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Figure 2. An example of the shortest path between an o-d pair.

i j
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network. However, the unique path between a pair of o-d nodes may not always cost less
than a path that has the same o-d pair and is allowed to have more than two hubs in a
solution network. In the example shown in Figure 2, suppose i and j are nonhub nodes that
are assigned to hub nodes l and m, respectively. The number on top of each arc is the mean
travel time between a pair of nodes. Suppose α= 0.5, Zγ = 2, and λ= 2. Clearly the shortest
path from i to j is i→ l→m→ j in the p-hub center single allocation problem. However,
in the stochastic p-hub center single allocation problem with service constraints, T̃ij = til +
αtlm+tmj+Zγλ

√
t2il +α2t2lm + t2mj = 1+0.5×8+1+2×2×√

12 +0.52 × 82 +12 = 22.97 on

the path i→ l→m→ j, and T̃ij = til+αtlk+αtkm+ tmj +Zγλ
√
t2il +α2t2lk +α2t2km + t2mj =

1+ 0.5× 4 + 0.5× 6 + 1 + 2× 2× √
12 +0.52 × 42 +0.52 × 62 +12 = 22.49 on the path i→

l→ k→m→ j, which is less than the other one. Thus, we may take this into consideration
in our future study of the problem. Other directions in our future study include numerical
experiment on the model formulation and heuristic method development.
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