ICS 2011 @ infﬂm

12th INFORMS Computing Society Conference Computing Society
© 2011 INFORMS | 1SBN 978-0-9843378-1-1
DO110.1287/ics.2011.0010

Lookahead Branching for Mixed
Integer Programming

Wasu Glankwamdee
IBM, Singapore, Singapore 486048, wasu@sg.ibm.com

Jeff Linderoth
Department of Industrial and Systems Engineering, University of Wisconsin-Madison,
Madison, Wisconsin 53706, linderoth@wisc.edu

Abstract We consider the effectiveness of a lookahead branching method for the selection of
branching variable in branch-and-bound method for mixed integer programming.
Specifically, we ask the following question: by taking into account the impact of the
current branching decision on the bounds of the child nodes two levels deeper than
the current node, can better branching decisions be made? We describe methods for
obtaining and combining bound information from two levels deeper in the branch-and-
bound tree, demonstrate how to exploit auxiliary implication information obtain in
the process, and provide extensive computational experience showing the effectiveness
of the new method. Our results show that the new search method can often signifi-
cantly reduce the number of nodes in the search tree, but the computational overhead
of obtaining information two levels deeper typically outweighs the benefits.

Keywords mixed integer linear programming; branch and bound; strong branching

1. Introduction
A mixed integer program (MIP) is the problem of finding

2MIP = max{ch +hTy: Ae+ Gy <b, ezl yeRIC! }, (MIP)

where [is the set of integer-valued decision variables, and C' is the set of continuous decision
variables. The most common algorithm for solving MIP, due to Land and Doig [23], is a
branch-and-bound method that uses the linear programming relaxation of MIP to provide an
upper bound on the optimal solution value (zyrp). Based on the solution of the relaxation,
the feasible region is partitioned into two or more subproblems. The partitioning processes
is repeated, resulting in a tree of relaxations (typically called a branch-and-bound tree) that
must be evaluated in order to solve MIP. See Nemhauser and Wolsey [29] or Wolsey [34] for
a more complete description of the branch-and-bound method for MIP.

A key decision impacting the effectiveness of the branch-and-bound method is how to
partition the feasible region. Typically, the region is divided by branching on a variable.
Branching on a variable is performed by identifying a decision variable x; whose solution
value in the relaxation (&;) is not integer-valued. The constraint z; < | &,] is enforced in one
subproblem, and the constraint z; > [Z;] is enforced in the other subproblem. In a given
solution (Z,7) to the LP relaxation of MIP, there may be many decision variables for which
Z; is fractional. A branching method prescribes on which of the fractional variables to base
the branching dichotomy.

130

Glankwamdee and Linderoth: Lookahead Branching
12th INFORMS Computing Society Conference, (© 2011 INFORMS 131

The effectiveness of the branch-and-bound method strongly depends on how quickly the
upper bound on zyp, obtained from the solution to a relaxation, decreases. Therefore,
we would like to branch on a variable that will reduce this upper bound as quickly as
possible. In fact, a long line of integer programming research in the 1970’s was focused
on developing branching methods that estimated which variables would be most likely to
lead to a large decrease in the upper bound of the relaxation after branching (Bénichou
et al. [6], Breu and Burdet [8], Forrest et al. [17], Gauthier and Ribiére [18], Geoffrion and
Marsten [19], Mitra [28]).

In the 1990’s, in connection with their work on solving large-scale instances of traveling
salesperson problems, Applegate et al. proposed the concept of strong branching (Applegate
et al. [4]). In strong branching, the selection of a branching variable is made by first select-
ing a set C of candidates. Each variable in the candidate set is tentatively (and partially)
branched on by performing a fixed, limited number of dual simplex pivots on the resulting
child nodes. The intuition behind strong branching is that if the subproblem bounds change
significantly in a limited number of simplex pivots, then the bounds will also change signifi-
cantly (relative to other choices) should the child node relaxations be fully resolved. Strong
branching has been shown to be an effective branching rule for many MIP instances and has
been incorporated into many commercial solvers, e.g., CPLEX (CPLEX Optimization [10]),
FICO-Xpress (Dash Optimization [11]). In full strong branching, the set C is chosen to be
the set of all fractional variables in the solution of the relaxation, and there is no upper
limit placed on the number of dual simplex pivots performed. Full strong branching is a
computationally expensive method, so typically C is chosen to be a subset of the fractional
variables in the relaxation solution, and the number of simplex pivots performed is small.

The fact that strong branching can be a powerful, but computational costly, technique
has led some researchers to consider weaker forms of strong branching that only perform
the necessary computations at certain nodes. For example, Linderoth and Savelsbergh [25]
suggest performing the strong branching computations for variables that have yet to be
branched upon. The commercial package LINDO performs strong branching at all nodes
up to a specified depth d of the branch-and-bound tree (LINDO Systems Inc. [26]). The
work of Linderoth and Savelsbergh is improved by Achterberg et al., in a process called
reliability branching in which the choice of the set C and the number of pivots to perform is
dynamically altered during the course of the algorithm (Achterberg et al. [3]).

In this paper, we consider the exact opposite question as that of previous authors. That
is, instead of performing less work than full strong branching, what if we performed more?
Specifically, by accounting for the impact of the current branching decision on the bounds of
the descendent nodes two levels deeper than the current node, can we make better branching
decisions? The intuition behind studying this question comes from viewing strong branching
as a greedy heuristic for selecting the branching variable. By considering the impact of the
branching decision not just on the child subproblems, but on the grandchild subproblems
as well, can we do better? And if so, at what computational cost? Karzan et al. [22] have
also recently introduced a branching rule that considers the combined impact of multiple
branching decisions. Their work uses information about fathomed nodes from an incom-
plete search. As such, it falls into the family of branching methods that leverage logical
information when making branching decisions (Achterberg [1], Achterberg and Berthold [2],
Sandholm and Shields [32]).

Obviously, obtaining information about the bounds of potential child nodes two levels
deeper than the current node may be computationally expensive. In this work, we will for
the most part focus on the question of if attempting to obtain this information is worthwhile.
A secondary consideration will be on how to obtain the information in a computationally
efficient manner. However, even if obtaining this information is extremely costly, we note
two factors that may mitigate this expense. First, in codes for mixed integer programming

Glankwamdee and Linderoth: Lookahead Branching
132 12th INFORMS Computing Society Conference, (© 2011 INFORMS

that are designed to exploit significant parallelism by evaluating nodes of the branch-and-
bound tree on distributed processors (Eckstein et al. [15], Linderoth [24], Ralphs [31]), in
the initial stages of the algorithm, there are not enough active nodes to occupy available
processors. If obtaining information about the impact of branching decisions at deeper levels
of the tree is useful, then these idle processors could be put to useful work by computing
this information. Second, as noted by numerous authors (Forrest et al. [17], Linderoth and
Savelsbergh [25]), the branching decisions made at the top of the tree are the most crucial.
Perhaps the “expensive” lookahead branching techniques need only be done at for the very
few first nodes of the branch-and-bound tree.

We are not aware of a work that considers the impact of the branching decision on
grandchild nodes. Anstreicher and Brixius consider a “weak” (but computationally efficient)
method of two-level branching as one of four branching methods described in Brixius and
Anstreicher [9]. In the method, k1 “pivots” are made to consider one branching decision;
then, using dual information akin to the penalties of Driebeek [13], one more “pivot” on a
second branching entity is considered. The current paper is an abbreviated version of the
Master’s Thesis of Glankwamdee [20], wherein more complete computational results can be
found.

The paper has three remaining sections. In §2, we explain the method for gathering
branching information from child and grandchild nodes, and we give one way to use this
information to make a branching decision. We also show that auxiliary information from
the branching variable determination process can be used to tighten the LP relaxation and
reduce the size of the search tree. Section 3 presents methods to speed up the lookahead
branching method. Extensive computational experiments are performed to determine good
parameter settings for practical strong branching and lookahead methods. These branching
methods are compared to that of MINTO, a sophisticated solver for mixed integer programs.
Conclusions are offered in §4.

2. Lookahead Branching

In this section, we examine the question of whether or not significantly useful branching
information can be obtained from potential grandchild nodes in the branch-and-bound tree.
We explain our method for gathering this information and describe a simple lookahead
branching rule that hopes to exploit the branching information obtained.

Figure 1 shows a potential two-level expansion of the search tree from an initial node. The
set F is the set of fractional variables in the solution to the initial LP relaxation (z*). By
definition, the solution value of an infeasible linear program is denoted as zpp = —o0, and

FIGURE 1. Notations for lookahead search tree.

ZLP

- —+ +- ++
Pij Pij Pik Pik

Glankwamdee and Linderoth: Lookahead Branching
12th INFORMS Computing Society Conference, (© 2011 INFORMS 133

the best lower bound on the optimal solution value zyrp is denoted at zp. If the constraint
x; < |z}] is imposed on the left branch, and the relaxation is resolved, a solution of value z;”
is obtained, and there is a set of variables F;” C I that takes fractional values. We use the
parameter £, =1 to indicate if the left branch would be pruned (i.e., if z; < zr); otherwise
& =0. Similarly, if the bound constraint ; > [z}] is imposed on the right branch, a solution
of value zf is obtained, a set of variables .7-';r C [is fractional, and the parameter fj indicates
if the child node would be pruned.

Continuing to the second level in Figure 1, if the variable j € F, is chosen as the branching
variable for the left child node, then the solution values for the two grandchild nodes are
denoted as z;;~ and z;;*, and the indicator parameters p;;~ and p;; " are set to 1 if the
corresponding grandchild nodes would be pruned, otherwise the indicators are set to 0. The

notation for grandchild nodes on the right is similar.

2.1. Branching Rules

Once the branching information from the grandchild nodes is collected, there is still the
question of to how to use this information to aid the current branching decision. Two reason-
able objectives in choosing a branching variable are to minimize the number of grandchild
nodes that are created and to try to decrease the LP relaxation bounds at the grand-
child nodes as much as possible. Various combinations of these objectives are explored in
Glankwamdee [20]. To keep the exposition short, we mention only one such method here.
We use the following definitions. Let

gzdéf{jef;\p;;zo,p;j+=0} and (1)
ef
F ke | pi =0, pit =0} (2)

be the sets of indices of fractional variables in child nodes both of whose grandchild nodes
would not be pruned. To combine the progress on bound reduction of two child nodes into
one number, we use the weighting function

W(a,b) ¥ {1y min(a, b) + p2 max(a, b)}, (3)

as suggested by Eckstein [14]. In this paper, the parameters of the weighting function are
set to u1 =4 and pe = 1. Linderoth and Savelsbergh verifies empirically that these weights
resulted in good behavior over a wide range of instances (Linderoth and Savelsbergh [25]).
Let the reduction in the LP relaxation value at the grandchild nodes be denoted by

Dy o -t where s1,sm € {4 @

Note that D;}** > 0. The symbol 7; counts the total number of potential grandchild nodes
that would be fathomed if variable 7 is chosen as the branching variable i.e.,

def __ _ _
ni = Y (o o)+ D0 (o ek (5)
JEF, keF;

The two goals of branching, bound reduction and node elimination, are combined into one
measure through a weighted combination. The branching rule employed in the experiments
chooses to branch on the variable ¢* that maximizes this weighted combination, namely

it e argmax{ max {W(D;;~, D;;7)} + max {W(Djk D)} +)\m} (6)
ier \jeF; keF;

- - et
where A= —— |g | Z W(D;;~,D;;* |g+‘ Z WD~ Dy™) (7)
JEG; keg’

Glankwamdee and Linderoth: Lookahead Branching
134 12th INFORMS Computing Society Conference, (© 2011 INFORMS

is the average (weighted) reduction in LP value of all potential grandchild nodes in the
sets G; and G;'. This value of A is chosen to give the terms in Equation (6) the same scale.
Note that in Equation (6), the variables j € F;” and k € F;" that maximize the weighted
degradation of the grandchild nodes LP relaxation value may be different. To implement

full strong branching, we let
s def s
D; = z1p— 2, where s€—,+, (8)
and we branch on the variable

i* € argmax{W(D; , D;")}. (9)
i€EF

2.2. Implications and Bound Fixing

When computing the LP relaxation values for many potential child and grandchild nodes,
auxiliary information that can be useful for tightening the LP relaxation and reducing the
size of the search tree is obtained.

2.2.1. Bound Fixing. When tentatively branching on a variable x;, either in strong
branching or in lookahead branching, if one of the child nodes is fathomed, then the bounds
on variable x; can be improved. For example, if the child node with branching constraint
x; > [x}] is infeasible (¢ = 1), then we can improve the upper bound on variable i to
be z; < |zf|. Likewise, if there exists no feasible integer resolution for a variable j after
branching on a variable ¢, then the bound on variable ¢ can be set to its complementary
value. The exact conditions under which variables can be fixed are shown in Table 1.

2.2.2. Implications. By examining consequences of fixing 0-1 variables to create poten-
tial grandchild nodes, simple inequalities can be deduced by combining mutually exclusive
variable bounds into a single constraint. The inequality identifies two variables, either origi-
nal or complemented, that cannot simultaneously be 1 in an optimal solution. For example,
if variables x; and xj are binary decision variables, and the lookahead branching procedure
determines that branching “up” on both x; and x (i.e., x; > 1, 2 > 1) results in a sub-
problem that may be pruned, then the inequality z; + z; < 1 can be safely added to the
LP relaxation at the current node and all descendant nodes. These inequalities are essen-
tially additional edges in a local conflict graph for the integer program (Atamtiirk et al. [5],
Savelsbergh [33]). As a line of future research, we intend to investigate the impact of adding
these edges to the local conflict graph and performing additional preprocessing. Further
grandchild inequalities can be added if any of the grandchild nodes are pruned as specified
in Table 2.

2.3. Experimental Setup

The lookahead branching rule has been incorporated into the mixed integer optimizer
MINTO v3.1, using the appl_divide() user application function that allows the user to
specify the branching variable (Nemhauser et al. [30]). In all the experiments, the default

TABLE 1. Bound fixing conditions.

Condition Implication
& =1 zi > [ai]
& =1 i < |27]
pi; =1and p[ﬁzl x; > [x]]

pi =1and pjit =1 z; < |7]

Glankwamdee and Linderoth: Lookahead Branching
12th INFORMS Computing Society Conference, (© 2011 INFORMS 135

TABLE 2. Grandchild implications.

Condition Inequality

pi; =1 (I-zi)+(1—-2;)<1
P =1 (1—z)+z; <1
o =1 zi+(1—mz) <1
ot =1 itz <1

MINTO option, including preprocessing and probing, automatic cut generation, and reduced
cost fixing, are used. The focus of the lookahead branching method is to reduce the upper
bounds of the relaxations obtained after branching. We will measure the quality of a branch-
ing method by the number of nodes in the branch-and-bound tree. Therefore, for these
experiments, the lower bound value zy, is initialized to be objective value of the (known)
optimal solution. By setting z; to the value of the optimal solution, we minimize factors
other than branching that determine the size of branch-and-bound tree. To solve the linear
programs that arise, we use CPLEX (v9.1) (CPLEX Optimization [10]). To speedup the
testing of the algorithm, we run the experiments on a Beowulf cluster at Lehigh Univer-
sity. The code is compiled with gce version 2.96 (Red Hat Linux 7.1) and run on Intel(R)
Pentium(R) IIT CPU, with clock speed 1133 MHz. The CPU time is limited to a maximum
of 8 hours, and the memory is limited to a maximum of 1024 MB. We have limited ini-
tial test to a suite of 16 instances from MIPLIB 3.0 (Bixby et al. [7]) and MIPLIB 2003
(Martin et al. [27]).

2.4. Computational Results

Our first experiment runs an implementation of full strong branching, with and without
bound fixing and implications, and lookahead branching, with and without bound fixing
and implications. The focus of the experiment is not on the speed of the resulting methods,
but instead on the following two questions:

e Does lookahead branching often make different branching decisions compared to full
strong branching? If so, what are the positive impacts of these branching decisions?

e Do bound fixing and grandchild inequalities coming from implications found in the
lookahead branching procedure have a positive impact on the size of the search tree?

Tables A.1, A.2, and A.3 in the appendix display full details of the experimental runs.
To summarize the results of the experiments, we use performance profiles plotted in log
scale, as introduced by Dolan and Moré [12]. A performance profile is a relative measure of
the effectiveness of a solver s when compared to a group of solvers S on a set of problem
instances P. To completely specify the performance profile, we need the following definitions:

® 7ps is a quality measure of solver s when solving problem p,

o Tps =Yps/(Mingesyps), and

o ps(T)={p € P|rps <7}|/|P].
Hence, ps(7) is the fraction of instances for which the performance of solver s is within a
factor of 7 of the best. A performance profile for solver s is the graph of ps(7). In general,
the higher the graph of a solver, the better the relative performance. Eleven of the six-
teen instances are solved to provable optimality by one of the four methods, and for these
instances, we use the number of nodes as the quality measure 7,,. Under this measure,
ps(1) is the fraction of instances for which solver s evaluated the fewest number of nodes
to verify optimality, and ps(co) is the fraction of instances for which solver s verified the
optimality of the solution of value z,. Figure 2 shows the performance profile plot for these
eleven instances. SB and LA denote strong branching and lookahead branching respectively
while Implication indicates that bound fixing and implications are added to the algorithms.
Two conclusions can evidently be drawn from Figure 2.

Glankwamdee and Linderoth: Lookahead Branching
136 12th INFORMS Computing Society Conference, (© 2011 INFORMS

FIGURE 2. Performance profile of number of evaluated nodes in solved instances.

1.0 T [' I
H |
_________ 1
I
1
— b
08 I |
I
(2 st
] 1 :
IS 1 |
o 1L} I
B o6} : |
o)
5 ,
° :
()]
8 :
c 04f : |
© P
e h
o _a
— SB 7
——— SB-implication
----- LA
......... LA-implication
0 I I
] 10 100

Not more than x times worse than best solver

(1) Using bound fixing and grandchild inequalities can greatly reduce the number of nodes
in the branch-and-bound tree.

(2) Neither full strong branching nor lookahead branching seems to significantly outper-
form the other in these tests.

The fact that full strong branching and lookahead branching seem to be of comparable
quality is slightly surprising, more so when one considers the fact that lookahead branching
quite often chooses to branch on a different variable than full strong branching does. In
Table 3, the second column lists the percentage of nodes at which lookahead branching
and full strong branching would make different branching decisions. For example, for the
instance danoint, the two methods choose a different branching variable 86% of the time.

TABLE 3. Lookahead branching statistics.

Percentage of No. of bound fixing No. of inequalities
Name difference (per node) (per node)
aflow30a 76 1.53 47.80
aflow40b 59 0.72 26.24
danoint 86 0.85 3.48
1152]av 25 2.56 267.56
misc07 73 1.32 32.35
modglob 50 1.00 17.13
opt1217 46 1.00 0.00
p0548 100 3.00 15.33
p2756 0 0.67 15.00
pkl 53 0.87 10.71
pp08a 75 1.02 0.86
qiu 100 3.60 120.60
rgn 71 0.64 2.75
steindb 60 1.19 72.08
swath 84 0.73 1.51

vpm2 54 0.83 8.81

Glankwamdee and Linderoth: Lookahead Branching
12th INFORMS Computing Society Conference, © 2011 INFORMS

137

FI1GURE 3. Performance profile of integrality gap in unsolved instances.

1.0

0.8

0.6

0.4

Percentage of problems

0.2

[—————

——— SB-implication
----- LA
LA-implication

— sB _

-y

Not more than x times worse than best solver

Also in Table 3, we list the number of times a variable’s bound is improved per node, and

the number of grandchild inequalities per node that is added.

For five of the sixteen instances, none of the branching methods is able to prove the
optimality of the solution. For these instances, we use the quality measure (7y,s), the final
integrality gap after eight hours of CPU time. Figure 3 shows the performance profile of the
four branching methods on the unsolved instances. Again, we see that the bound fixing and
grandchild (implications) inequalities can be very effective, and that lookahead branching
and full strong branching are of similar quality for these instances.

FI1GURE 4. Performance profile of running time in solved instances.

1.0

0.8

o
o

Percentage of problems
©
N

0.2

—— [
- i ! i
|——_|: ____l
i !
el DR T
- i il i
R 4l
N i
| i
T . —— MINTO
- i --- SB i
T - E{___ ----- SB-implication
Vo I (PR LA
: —-—- LA-implication
1) —
10 100

Not more than x times worse than best solver

Glankwamdee and Linderoth: Lookahead Branching
138 12th INFORMS Computing Society Conference, (© 2011 INFORMS

The final performance profile (in Figure 4) uses the solution time as the quality parameter
for the eleven solved instances and also includes a profile for the default MINTO branching
rule. The profile demonstrates:

e As expected, the running time of the strong branching and lookahead branching are in
general worse than the default MINTO.

e However, the added implications and bound fixing help to solve the pk1 instance which
is unsolved with the default MINTO.

3. Abbreviated Lookahead Branching

The initial experiment led us to believe that measuring the impact on grandchild nodes
when making a branching decision can reduce the number of nodes of the search tree, in
large part due to additional bound fixing and implications that can be derived. However,
the time required to perform such a method can be quite significant. Our goal in this section
is to develop a practical lookahead branching method. An obvious way in which to speed
the process up is to consider fixing bounds on only certain pairs of variables and then to
limit the number of simplex iterations used to gauge the change in bound at the resulting
grandchild nodes.

3.1. Algorithm

To describe the method employed, we use similar notation as for the original method
described in §2. Figure 5 shows the notation we use for the values of the LP relaxations
of the partially expanded search tree and the indicator variables if a particular grandchild
node would be fathomed.

For a pair of variables (z;,2;) whose values in the current LP relaxation are fractional, we
create the four subproblems denoted in Figure 5 and do a limited number of dual simplex
pivots in order to get an upper bound on the values z;;™, ziTr, szﬂ and zj,j. The obvious
questions we must answer are how to choose the pair of variables (z;,z;), and how many
simplex pivots should be performed.

3.2. Strong Branching Implementation

The questions of how to choose candidate variables and how many pivots to perform on
each candidate must also be answered when implementing a (one-level) strong branch-
ing method. Since our goal is to show possible benefits of the lookahead method, we also
implement a practical strong branching method with which to compare the abbreviated

FIGURE 5. Notations for abbreviated lookahead search tree.

ZLP

—— —+ +- ++
Zij Zij Zij Zij

—— —+ +- ++
Py Pij Pij Pij

didj =z <|z7), ;<25 widj =z 2> [af], x; < |}

diuj =x; < |a7], ;2 [z]] wuj =2 >[27], x; 2> |2]]

Glankwamdee and Linderoth: Lookahead Branching
12th INFORMS Computing Society Conference, (© 2011 INFORMS 139

lookahead method. When implementing strong branching, there are two main parameters of
interest:
e the number of candidate variables to consider, (or the size of the set C), and
e the number of simplex pivots (down and up) to perform on each candidate.
Our choice to limit the size of the candidate set is based on how many fractional variables
there are to consider in a solution (#,¢) whose objective value is zp. Specifically, we let the
size of this set be
|C| = max{«|F]|, 10}, (10)
where F is the set of fractional variables in Z, and 0 < o <1 is a parameter whose value
we will determine through a set of experiments. When branching, the variables are ranked
from largest to smallest according to the fractionality of Z;, i.e., the criteria min(f;,1 — f;),
where f; =&; — | Z;] is the fractional part of &;. The top |C| variables are chosen as potential
branching candidates. For each candidate variable x;, § dual simplex iterations are per-
formed for each of the down and up branch, resulting in objective values z; and z;r . The
variable selected for branching is the one with
i € argmax{W(zLp — 2; , zLp — z+)} (11)
ieF
More sophisticated methods exist for choosing the candidate set C. For example, the
variables could be ranked based on the bound change resulting from one dual simplex pivot
(akin to the penalty method of Driebeek [13]), or even a dynamic method, in which the size
of the set considered is a function of the bound changes seen on child nodes to date, like
the method of Achterberg et al. [3]. We denote by SB(&, () the strong branching method
with parameters & and B In our experiments, strong branching is implemented using the
CPLEX routine CPXstrongbranch() (CPLEX Optimization [10]).

3.3. Lookahead Branching Implementation

When implementing the abbreviated lookahead branching method, we must determine

e the number of candidate variable pairs to consider, and

e the number of simplex iterations to perform on each of the four grandchild nodes for
each candidate pair.

Our method for choosing the set of candidate pairs D works as follows. First, a limited
strong branching SB(&, 3) is performed, as described in §3.2. Then, the variables are ranked
from largest to smallest using the same criteria as in strong branching, namely W(zrp — 2; ,
ZLP — %;) From these, the best 7 candidates are chosen, and for each pair of candidate
varlables coming from the best 7, § dual simplex iterations are performed on the four
grandchild nodes, resulting in the values 27}°* and pj}** of Figure 5. If & and (3 are the

parameters for the limited strong branching, and ¥, 5 are the parameters defining the size of
the candidate set of variable pairs and number of pivots on each grandchild node to perform,
then we will refer to the branching method as LA (& 5,’7,) Note that the set D consists
of all pairs of the best v candidate variables from the limited strong branching. It may not
be necessary to consider each pair, and we will consider other mechanisms for choosing the
variable pairs as a line of future research.

3.4. Computational Results

A first set of experiments is performed to determine good values for the branching param-
eters «, 3, v, and §. Subsequently, we compare the resulting strong branching and abbre-
viated lookahead branching methods with the default branching scheme of MINTO v3.1.
MINTO v3.1 uses a combination of (once-initialized) pseudocosts and the penalty method of
Driebeek [13]. See Linderoth and Savelsbergh [25] for a complete explanation of this method.
For these experiments, we use a test suite of 89 instances from MIPLIB 3.0 (Bixby et al. [7])
and MIPLIB 2003 (Martin [27]). Besides the test suite of problems, all other characteristics
of these experiments are the same as those described in §2.3.

Glankwamdee and Linderoth: Lookahead Branching
140 12th INFORMS Computing Society Conference, (© 2011 INFORMS

3.4.1. Strong Branching Parameters. Our first goal is to determine reasonable values
for @ and (8 to use in our strong branching method SB(«,3). Doing a search of the full
parameter space for o and (3 would have required prohibitive computational effort, so instead
we employ the following mechanism for determining reasonable default values for a and (.
The number of simplex iterations is fixed to § =5, and an experiment is run to determine
a good value of « given that 3 =15. An experiment was run for values o = 0.25,0.5,0.75,
and 1.0. Details of this experiment, including a performance profile plot, can be found in
the technical report version of this work (Glankwamdee and Linderoth [21]). The result of
the experiment shows that o= 0.5, considering half of the fractional variables as branching
candidates, gives good results.

Next, we run an experiment comparing the branching rules SB(0.5, 3) for 3 =5, 10, and 25.
Again, details of this experiment can be found in the technical report (Glankwamdee and
Linderoth [21]). The results of the experiment are inconclusive in determining a best value
for the parameter 3, but the value § =10 appears to perform reasonably well.

3.4.2. Lookahead Branching Parameters. This experiment is designed to determine
appropriate values for the number of branching candidates and the number of simplex piv-
ots, i.e., parameters v and ¢ respectively, in the abbreviated lookahead branching method,
LA(a,8,7,6). In this experiment, we have fixed the values for (a*, 3*) = (0.5,10) as deter-
mined in §3.4.1. To find appropriate values for v and 9, we follow the similar strategy to the
one that is used to determine o* and (3*. First, we fix a value of § = 10 and compare the
performance of branching rules LA(0.5, 10, -, 10). The results of this experiment are sum-
marized in Figure 6. We conclude from the experiment that v =3 is a reasonable parameter
value.

Given that v =3, the next experiment compared branching methods LA(0.5,10,3,6) for
0 € {5,10,15,20,25}. The results of this experiment are summarized in the performance
profile in Figure 7. There is also no clear winner in this experiment, but we prefer the
smaller number of simplex pivots. Therefore, we select the good parameter settings for the
abbreviated lookahead branching method to be (a*, 5*,~v*,6*) = (0.5, 10, 3, 10).

3.4.3. Full Strong Branching and Abbreviated Lookahead Branching Compar-
ison. This experiment is aimed at determining if the limited grandchild information
obtained from the abbreviated lookahead branching method could reduce the number of

FIGURE 6. Performance profile of running time as - varies.

[7)

=

o

o

o

[=%

S

[0)

=

8

c

[0]

<t

(0]

o

02 b
— 0.50, 10, 3, 10
—--—- 0.50, 10,5, 10
----- 0.50, 10, 10, 10
0 1

1 10
Not more than x times worse than best solver

Glankwamdee and Linderoth: Lookahead Branching
12th INFORMS Computing Society Conference, © 2011 INFORMS 141

FIGURE 7. Performance profile of running time as ¢ varies.

Percentage of problems

Not more than x times worse than best solver

nodes in the search tree significantly. Namely, we compare the branching methods SB(a*, 5*)
and LA(a*, 5*,7*,6%). The abbreviated lookahead branching method will not be at all effec-
tive if the number of nodes in LA(a*,3*,v*,6*) is not significantly less than SB(a*, %)
since the amount of work done to determine a branching variable is significantly larger in
LA(a*, 5*,7*,6*) than for SB(a*, 3*).

Figure 8 is the performance profile comparing the number of nodes evaluated in the two
methods. The number of evaluated nodes in the abbreviated lookahead method is substan-
tially less than the strong branching. A somewhat more surprising result is depicted in Fig-
ure 9, which shows that LA(a*, 8*,7*,6*) also dominates SB(a*, 3*) in terms of CPU time.

FIGURE 8. Performance profile of number of evaluated nodes.

1.0 . :
1))
£
K}
Q
g 4
o
ks
[
(o]
o]
= 4
Q
<
[
o

02} .

—sB
-—— LA
o n n n n PR 1 1

1 10 100
Not more than x times worse than best solver

Glankwamdee and Linderoth: Lookahead Branching
142 12th INFORMS Computing Society Conference, (© 2011 INFORMS

FIGURE 9. Performance profile of running time.

0.8

o
o

Percentage of problems
=
T
1

o
S
T
1

—— SB

-—— LA

0 " " " " " " P | " " " " " " PR |

1 10 100
Not more than x times worse than best solver

3.4.4. Final Comparison. The final experiment is the most practical one, aimed at
determining for a fixed maximum number of simplex iterations, whether these iterations are
most effectively used evaluating potential child node bounds or grandchild node bounds.
Namely, we would like to compare the strong branching strategy against the abbreviated
lookahead branching strategy for parameter values such that

2|C1|ﬂ:4w'

The LHS of Equation (12) is the maximum number of pivots that the strong branching
method will perform, where |C;| is computed from Equation (10). Similarly, the RHS is the
maximum number of pivots that the lookahead branching method can perform.

For this experiment, we implement the strong branching with bound fixing and the abbre-
viated lookahead branching with bound fixing as part of MINTO options. The variables in
the set C are ranked as described earlier according to the fractionality while the variables
in the set D are ranked from largest to smallest using the pseudocosts. We use CLP (For-
rest [16]) to solve the linear programs. The strong branching parameters are fixed at the
setting determined in §3.4.1, namely a® =0.5 and §* = 10. We fix the lookahead branching
parameter §* =10 as determined in §3.4.2. Finally, 7 is computed from Equation (12).

We compare the effectiveness of these methods with the default MINTO branching. We
also implement another branching strategy, LLA-5, that applies the abbreviated lookahead
branching at the top of branch-and-bound tree, i.e., only to nodes with depth less than 5,
and use the default MINTO scheme otherwise. The experimental results are summarized in
the performance profiles of Figures 10 and 11. Full details of the experimental runs can be
found in Table A.4 in the appendix. For a fixed number of simplex iterations, the abbrevi-
ated lookahead branching outperforms the strong branching. In addition, the abbreviated
lookahead method leads to fewer evaluated nodes.

The average CPU time for MINTO on the instances in the test suite was 730.21 seconds,
while the average for the lookahead branching method was 558.81 seconds. The geometric
mean of the CPU time for MINTO was 9.55 seconds, and the geometric mean for the
lookahead branching was larger, 10.17 seconds. The fact that the average time for lookahead
branching is smaller, while the geometric mean is larger is an indication that performing
lookahead branching may prove beneficial on difficult instances.

(12)

Glankwamdee and Linderoth: Lookahead Branching
12th INFORMS Computing Society Conference, (© 2011 INFORMS 143

F1GURE 10. Performance profile of number of evaluated nodes.

T
(2]
IS
Qo
Qo
e . -
o
ks
(0]
()]
8
C -
50.
o
[0]
o
02 —— MINTO| -
--- SB
----- LA
--------- LA-5
0 1
1 10
Not more than x times worse than best solver
FIGURE 11. Performance profile of running time.
1.0 T
___J—
0.8 4
(2]
IS
Qo
g06 i
o
ks)
(]
()]
8 i
% 0.4 4
o M
[0]
o
0.2 —— MINTO|
--- SB
----- LA
--------- LA-5
0 1 1 1 1 1 1 1 1

1 10
Not more than x times worse than best solver

4. Conclusion

We have asked and partially answered the question of whether or not consider branching
information from grandchild nodes can result in smaller search trees. We have proposed a
method for gathering the information from grandchild nodes. We verified that this informa-
tion can often be quite useful in reducing the total number of nodes in the search, can result
in fixing bounds on variables, and can often give implications between variables. Finally, we
show that by the limiting number of simplex iterations or the number of fractional variables
for which to generate the branching information, a similar branching decision can still be
made, but with less computational effort. The resulting branching rule is of comparable

Glankwamdee and Linderoth: Lookahead Branching

144 12th INFORMS Computing Society Conference, (© 2011 INFORMS

quality to the advanced branching methods available in the MINTO software system. From
our experience, it seems unlikely that lookahead branching will be a good default branch-
ing scheme for general MIP, but for some classes of hard problem instances, the additional
computational effort may well pay off.

Appendix. Tables of Results

TABLE A.1. Solved MIPLIB instances.

Number of evaluated nodes

Name SB SB-implication LA LA-implication
1152lav 193 11 281 9
p0548 3 3 3 3
rgn 1,011 127 1,296 119
stein4b 16,437 7,491 20,409 8,755
vpm2 4,883 381 4,291 527
misc07 8,173 163 5,219 31
modglob 159 29 199 79
p2756 7 3 7 3
aflow30a -1 15 -1 45
pkl -1 24,001 -1 13,731
qiu -1 5 -1 5

Note. A value of —1 indicates that the instance is not solved within the time limit of eight hours.

TABLE A.2. Unsolved MIPLIB instances.

Integrality gap

Name SB SB-implication LA LA-implication
optl1217 23.88 23.88 24.07 24.07
pp08a 10.63 10.66 11.55 11.38
aflow40b 13.25 6.91 13.09 5.90
danoint 4.38 4.38 4.49 4.41
swath 32.47 30.66 30.27 29.29

TABLE A.3. Total running time of solved MIPLIB instances.

Total running time

Name MINTO SB SB-implication LA LA-implication
1152lav 8.84 1,808.68 1,059.83 3,678.86 606.83
p0548 0.21 0.27 0.31 0.29 0.26
rgn 2.91 32.13 24.18 31.13 23.66
steindb 296.94 19,820.37 15,107.89 23,863.70 13,323.79
vpm2 23.71 522.02 144.39 483.05 107.62
misc07 790.96 13,852.87 8,000.36 11,993.02 8,201.39
modglob 2.95 115.14 41.55 148.21 44.25
pP2756 2.92 18.52 14.70 18.10 15.34
aflow30a 1,842.31 -1 844.3 -1 1,779.79
pk1 ~1 -1 4,928.79 -1 4,685.71
qiu 5,112.87 -1 454.33 -1 472.78

Note. A value of —1 indicates that the instance is not solved within the time limit of eight hours.

Glankwamdee and Linderoth: Lookahead Branching

12th INFORMS Computing Society Conference, (© 2011 INFORMS 145
TABLE A.4. Number of evaluated nodes and CPU time in final comparison.
Number of evaluated nodes Total running time

Name MINTO SB LA LA-5 MINTO SB LA LA-5

aflow30a 23,293 16,955 11,241 14,483 1,5624.07 2,119.58 1,320.62 877.76
air03 1 1 1 1 1.12 1.12 1.13 1.18
air04 1,093 187 321 301 1,457.67 747.19 1,047.84 462.89
air05 2,625 275 361 605 1,205.85 622.73 809 488.19
bell3a 44,779 44,811 47,029 44,911 30.16 30.28 34.3 31.72
bell5 8,243 —1 100,943 8,245 5.38 -1 189.42 5.83
blend2 1,527 1,085 2,143 1,613 8.27 22.21 38.58 10.68
cap6000 13,067 11,939 15,073 15,855 339.49 750.34 1,421.98 403.3

dcmulti 1,075 1,133 841 861 5.05 25.18 13.4 4.97
disctom 1 1 1 1 9.81 9.83 9.77 9.83
dsbmip 1 1 1 1 0.95 0.95 0.99 0.95
egout 3 3 3 3 0.02 0.02 0.02 0.02
enigma 1 1 1 1 0.01 0.01 0.01 0.01
fast0507 9,439 -1 -1 5,677 19,002.07 -1 -1 12,335.81
fiber 193 43 45 57 8.11 7.41 6.25 6.62
fixnet6 81 263 105 97 2.79 12.55 5.42 3.95
flugpl 5,295 7,103 3,593 5,933 1.32 5.55 3.62 1.5

gen 3 3 3 3 0.16 0.19 0.19 0.17
gesa2 79,739 -1 50,911 74,073 1,324.28 -1 2,595.98 1,272.3

gesa2_o 95,947 —1 42,243 81,313 1,125.75 -1 2,566.79 956.78
gesa3d 1,249 2,327 T 821 32.99 208.02 67.57 24.18
gesa3_o 699 1,555 875 765 14.19 157.02 85.33 20.35
gt2 5 11 5 5 0.05 0.1 0.06 0.06
harp2 5,327 7,677 6,451 6,583 338.85 3,910.79 1,864.7 387.64
khb05250 13 13 13 13 0.39 0.47 0.5 0.5

1152lav 571 435 197 279 19.41 45.55 22.75 18.68
Iseu 227 103 145 211 0.94 1.57 1.39 1.27
misc03 2,333 989 1,363 1,541 6.02 12.03 13.71 4.95
misc06 55 65 45 47 1.44 4.52 2.54 1.89
misc07 86,581 30,705 57,279 77,779 520.07 996.36 1,649.02 447.34
mitre 1 1 1 1 10.64 10.55 10.65 10.74
mod008 511 259 361 557 2.28 3.83 4.46 2.38
mod010 69 41 25 61 6.61 7.72 6.99 7.44
mod011 9,459 4,237 12,401 11,851 5,605.32 3,964.62 9,553.1 7,133.23
modglob 247 237 277 273 3.57 9.54 10.41 6.18
nw04 291 177 271 325 529.64 653.21 974.36 770.89
p0033 13 9 11 11 0.07 0.1 0.09 0.09
p0201 255 177 233 235 3.16 6.55 8.19 3.47
p0282 45 41 19 19 1.3 2.8 2.1 1.97
p0548 3 3 3 3 0.24 0.27 0.26 0.26
p2756 5 5 13 13 3.67 4.15 6.46 6.46
qiu 117,577 46,613 56,121 70,456 3,975.41 4,908.47 4,791.42 2,331.61
qnetl 95 325 135 147 5.13 25.92 13.99 9.17
gnetl_o 223 152 181 320 7.38 11.72 10.12 10.67
rentacar 51 43 37 49 19.82 32.55 25.1 22.03
rgn 2,657 2,319 2,635 2,881 7.02 12 14.73 8.19
stein27 3,939 2,707 3,107 3,615 2.4 12.29 10.54 2.81
steindb 56,861 38,681 48,937 60,763 84.66 549.29 709.91 95.69
vpml 1 1 1 1 0.04 0.04 0.04 0.05
vpm2 9,307 9,839 8,201 10,041 49.48 148.98 104.83 54.82
Average 11,464.96 9,927.67 9,656.67 9,984.02 730.21 1,063.04 1,173.67 558.81
Geometric 298.93 260.29 250.57 267.95 9.55 18.93 17.73 10.17

mean

Note. A value of —1 indicates that the instance is not solved within the time limit of eight hours.

146

Glankwamdee and Linderoth: Lookahead Branching
12th INFORMS Computing Society Conference, (© 2011 INFORMS

References

1]

[10]
[11]
12
[13]
[14]
[15]
[16]
17)
18]
[19]
[20]

21]

22]

23]
24]
[25]

[26]
[27]

T. Achterberg. Conflict analysis in mixed integer programming. Discrete Optimization 4:4—20,
2007.

T. Achterberg and T. Berthold. Hybrid branching. W. J. van Hoeve and J. Hooker, eds.
CPAIOR: Lecture Notes in Computer Science, Vol. 5547. Springer, Berlin, 309-311, 2009.

T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters
33:42-54, 2004.

D. Applegate, R. Bixby, V. Chvatal, and W. Cook. On the solution of traveling salesman
problems. Documenta Mathematica Journal der Deutschen Mathematiker-Vereinigung, Inter-
national Congress of Mathematicians 3:645-656, 1998.

A. Atamtiirk, G. Nemhauser, and M. W. P. Savelsbergh. Conflict graphs in solving integer
programming problems. Furopean Journal of Operational Research 121:40-55, 2000.

M. Bénichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent. Experiments
in mixed-integer linear programming. Mathematical Programming 1:76-94, 1971.

R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0. Optima 58:12-15, 1998.

R. Breu and C. A. Burdet. Branch and bound experiments in zero-one programming. Mathe-
matical Programming 2:1-50, 1974.

N. Brixius and K. Anstreicher. Solving quadratic assignment problems using convex quadratic
programming relaxations. Optimization Methods and Software 16:49-68, 2001.

CPLEX Optimization. Using the CPLEX Callable Library, Version 9.1. CPLEX Optimization,
Inc., Incline Village, NV, 2005.

Dash Optimization. XPRESS-MP Reference Manual. Dash Optimization, Ltd., Leamington,
Spa, UK, 2006.

E. Dolan and J. Moré. Benchmarking optimization software with performance profiles. Math-
ematical Programming 91:201-213, 2002.

N. J. Driebeek. An algorithm for the solution of mixed integer programming problems. Man-
agement Science 12:576-587, 1966.

J. Eckstein. Parallel branch-and-bound methods for mixed integer programming. SIAM News
27:12-15, 1994.

J. Eckstein, C. A. Phillips, and W. E. Hart. PICO: An object-oriented framework for parallel
branch-and-bound. Proc. Inherently Parallel Algorithms in Feasibility and Optimization and
Their Applications, 219-265, 2001.

J. Forrest. CLP. http://www.coin-or.org/. 2004. Accessed June 1, 2004.

J. J. H. Forrest, J. P. H. Hirst, and J. A. Tomlin. Practical solution of large scale mixed integer
programming problems with UMPIRE. Management Science 20:736-773, 1974.

J. M. Gauthier and G. Ribiére. Experiments in mixed-integer linear programming using pseu-
docosts. Mathematical Programming 12:26-47, 1977.

A. M. Geoffrion and R. E. Marsten. Integer programming algorithms: A framework and state-
of-the-art survey. Management Science 18:465-491, 1972.

W. Glankwamdee. Lookahead branching for mixed integer programming. Master’s thesis,
Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 2004.
W. Glankwamdee and J. T. Linderoth. Lookahead branching for mixed integer programming.
Technical Report 06T-004, Department of Industrial and Systems Engineering, Lehigh Uni-
versity, Bethlehem, PA, 2006.

F. K. Karzan, G. L. Nemhauser, and M. W. P. Savelsbergh. Information-based branching
schemes for binary linear mixed integer problems. Mathematical Programming Computation
1:249-293, 2009.

A. H. Land and A. G. Doig. An automatic method for solving discrete programming problems.
FEconometrica 28:497-520, 1960.

J. T. Linderoth. Topics in Parallel Integer Optimization. Ph.D. thesis, Georgia Institute of
Technology, Atlanta, 1998.

J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies in mixed
integer programming. INFORMS Journal on Computing 11:173-187, 1999.

LINDO Systems. LINDO User’s Manual, LINDO Systems Inc., Chicago, 1998.

A. Martin, T. Achterberg, and T. Koch. MIPLIB 2003. http: //miplib.zib.de, 2003.

Glankwamdee and Linderoth: Lookahead Branching
12th INFORMS Computing Society Conference, (© 2011 INFORMS 147

[28]
[29]
[30]
31]

32]

[33]

[34]

G. Mitra. Investigation of some branch and bound strategies for the solution of mixed integer
linear programs. Mathematical Programming 4:155-170, 1973.

G. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley and
Sons, New York, 1988.

G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. MINTO, a mixed INTeger
optimizer. Operations Research Letters 15:47-58, 1994.

T. K. Ralphs. SYMPHONY 5.0 User’s Manual, November 11, 2004. http: //projects.coin-or.org/
svn/SYMPHONE /html/doc/SYMPHONY-5.0-Manual.pdf. Accessed December 2, 2010.

T. Sandholm and R. Shields. Nogood learning for mixed integer programming. Techni-
cal Report CMU-CS-06-155, Computer Science Department, Carnegie Mellon University,
Pittsburgh, 2006.

M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing 6:445-454, 1994.

L. A. Wolsey. Integer Programming. John Wiley and Sons, New York, 1998.

