
ICS 2011
12th INFORMS Computing Society Conference Computing Society

c© 2011 INFORMS | isbn 978-0-9843378-1-1
doi 10.1287/ics.2011.0004

A Steiner-Zone Heuristic for Solving the
Close-Enough Traveling Salesman Problem

William K. Mennell
BAE Systems, AIT, Burlington, Massachusetts 01803, wmennell@gmail.com

Bruce L. Golden
R. H. Smith School of Business, University of Maryland, College Park, Maryland 20742,
bgolden@rhsmith.umd.edu

Edward Wasil
Kogod School of Business, American University, Washington, DC 20016, ewasil@american.edu

Abstract In the Close-Enough Traveling Salesman Problem (CETSP), if a salesman is within
a specified distance of a node, then the node has been visited. This paper presents
a method for solving the CETSP that is based on Steiner zones. We generate test
problems and conduct extensive computational experiments comparing our method to
other heuristics. Overall, our method is very fast and improves upon heuristics from
the literature.

Keywords traveling salesman problem; unmanned aerial vehicle; routing; Steiner zone; CPLEX;
Concorde; Lin-Kernighan; generalized traveling salesman problem; genetic algorithm;
second-order cone program

1. Introduction
The Traveling Salesman Problem (TSP) is one of the most studied problems in operations
research. A salesman starts and ends at the same city and must visit n cities exactly once
traveling the least distance possible. Given a complete, undirected graph G= (V,E), where
V is the set of n nodes (cities), E is the set of edges connecting the nodes, and each edge
has a length (distance), we must find a tour (Hamiltonian cycle) that minimizes the sum
of the lengths of the edges in the symmetric TSP. The edge connecting nodes i and j is
denoted eij . The book by Applegate et al. [1] provides a detailed history of the TSP including
applications and computational aspects.
This paper examines the following variant of the TSP. If a salesman is within a specified

distance of a node (in other words, a salesman is “close enough”), then the node is considered
to have been visited. We illustrate the CETSP in Figure 1. In the standard TSP shown in
Figure 2(a), the salesman leaves the depot (depicted by a triangle), visits four nodes, and
returns. In the CETSP shown in Figure 2(b), the salesman needs to get within distance r
of each node i (this is depicted by the four disks), where r is the same for each node. If
the salesman visits a location in the intersection of the four disks, then each node has been
visited. Clearly, the out-and-back solution to the CETSP has a shorter total length than
the solution with five edges required by the TSP. In the CETSP, the salesman moves freely
in 2D Euclidean space, whereas, in the TSP, the salesman travels from node to node.
The CETSP has a number of practical applications. Consider the deployment of a drone

aircraft (unmanned aerial vehicle) to monitor several geographic regions. To collect its recon-
naissance information, the aircraft needs to fly within a certain distance of each region’s

162

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 163

Figure 1. A comparison of an optimal TSP tour on five cities to an optimal CETSP tour on the
same cities.

(a) TSP tour (b) CETSP tour

Notes. An optimal CETSP tour is never longer than the optimal TSP tour since any TSP tour is feasible
to CETSP. In this example, a simple out-and-back trip from the origin to the intersection of the four
disks defines the optimal CETSP tour since visiting the intersection gets close enough to the four cities
simultaneously and the straight line minimizes the distance from the depot to the intersection.

center. Resource constraints require that a flight path (tour) must be followed that gets close
enough to the center of each region while simultaneously minimizing flying time (distance
traveled).
Utility companies use automated meter-reading with radio frequency identification

(RFID) to read utility meters from a distance. A meter reader can record the use of water,
gas, or electricity within 500 to 1,000 feet of a customer and does not need to traverse
every street in a neighborhood. The radius of RFID coverage transforms the traditional
meter-reading problem from a TSP to a CETSP.
This paper develops a solution method based on Steiner zones, generate a set of test prob-

lems, and conduct extensive computational experiments in which we compare the results of
our method to the results of other methods, including a genetic algorithm, a tour generation
and modification heuristic, and a greedy heuristic.

Figure 2. Two CETSP instances for which the lower bounds on the optimal objective function
values are equal, but the optimal objective function values are much different.

�

(a) 22-node problem

�

(b) 90-node problem

Note. Subfigures are not drawn to scale; δ is equal in both.

Mennell, Golden, and Wasil: Close-Enough TSP
164 12th INFORMS Computing Society Conference, c© 2011 INFORMS

2. Literature Review
The CETSP is a specific instance of three more general problems that appear in the liter-
ature, the Generalized Traveling Salesman Problem (GTSP) (Fischetti et al. [9], Silberholz
and Golden [19]), the Geometric Covering Salesman Problem (GCSP) (Arkin and Hassin [2],
Gendreau et al. [10]), and the Traveling Salesman Problem with Neighborhoods (TSPN)
(Dumitrescu and Mitchell [6], Elbassioni et al. [8], Mitchell [15]). For a thorough discussion
of each problem and its relationship to the CETSP see Mennell [14]. Our work focuses solely
on the CETSP and should produce better results than any algorithm designed for more
general problems such as the GCSP.
The first description of the CETSP is given by Gulczynski et al. [11]. They consider utility

companies that use RFID to read meters from a distance. The authors survey six heuristics
(three variants of tiling, radial adjacency, sweeping circle, Steiner zone) for solving problems
with Euclidean distances and equal r for all disks. The six heuristics have three steps in
common.

• Step 1. Find a set of points S such that each customer i is within r units of at least
one point in S. Each point in S is called a supernode since visiting it allows the salesman
to simultaneously visit multiple nodes.

• Step 2. Solve a TSP on the points in S to produce a near-optimal solution T that is a
feasible solution to the CETSP.

• Step 3. Reduce the distance traveled in T while maintaining feasibility.
Dong et al. [4] formulate the CETSP as a mixed integer, nonlinear program (MINLP),

but they do not attempt to solve it. Instead, they develop two heuristics that use clus-
tering (merged tiling) or convex hulls to generate the supernodes. The TSP tour over the
supernodes is constructed with a convex hull insertion algorithm. The tour is improved
with a simulated annealing algorithm. The authors test their two heuristics on 190 ran-
dom Euclidean problems with 100 to 1,000 customers and 10 different radii. Both heuristics
produced good solutions and were very fast with running times under one second.
Yuan et al. [20] consider the problem of routing a mobile robot to visit sensors that are

distributed in the Euclidean plane. In order to communicate with a sensor and download
data, a robot must be within a certain distance of it (the effective range is specified by a disk
and the disks do not overlap). The authors develop an evolutionary approach for solving the
robot routing problem and compare its performance to an approximation algorithm on five
problems with 19 to 300 sensors. The evolutionary approach generated the shortest tour for
each problem although the convergence speed was slow.
Shuttleworth et al. [18] extend the CETSP to street networks. They consider a real-world

meter-reading problem with actual data. The authors’ heuristic applies a two-stage process.
In the first stage, a heuristic selects a subset of street segments to be traversed based on the
radius r. In the second stage, street segments are added to the subset of street segments from
the first stage to form a cycle. Shuttleworth et al. [18] consider four simple heuristics and
two integer programs for selecting the street segments. For example, the weighted bang-for-
buck heuristic first selects the street segment that covers the largest number of customers,
then selects the street segment that covers the largest number of additional customers, and
so on until each customer is covered by at least one street segment. The authors use a
commercial vehicle routing system to produce a complete travel path that starts and ends
at the depot. Computational results showed that the weighted bang-for-buck heuristic was
simple and effective, and generated solutions that saved time and distance when compared
to the existing route used by the utility company.

2.1. Formulation and Lower Bounds
Mennell [14] describes a MINLP formulation of the CETSP. Since we do not use that for-
mulation directly in this paper, we do not include it here. The CETSP is a generalization

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 165

of the TSP (when r = 0 for all nodes, the CETSP reduces to the TSP) and is, therefore,
NP-hard. The standard 1-tree (Held and Karp [12]) and 2-matching (Edmonds [7]) lower
bounds techniques for TSPs cannot be applied to the CETSP without significant modifica-
tions, so we do not use them. Instead, we construct a lower bound in the following way. Let
d̄ij = min(0, dij − r) when either i or j is the depot, where dij is the distance between nodes
i and j. Otherwise, d̄ij =min(0, dij − 2r). If disks i and j overlap, then d̄ij = 0. We fix each
edge in G to its minimum possible distance and solve a TSP to optimality using the set of
all d̄ij . In Figure 2, we show two problems that differ in size and optimal CETSP solution
but have the same lower bound using our method. Each layer of squares overlaps the next
one so that d̄ij = 0 for all overlapping disks. Given distances d̄ij , the optimal tour lengths
are the same for both problems.
Clearly, this lower bound is weak. Unless there is no disk overlap and r is small, the lower

bound is often 0 and provides little information about the optimality gap.
Another lower bound technique is the longest out-and-back tour from the depot to any

node. A CETSP cannot have an optimal solution shorter than twice the length of the shortest
straight line from the depot out to the boundary of the disk furthest from the depot. This
bound is also very weak.
Developing tight lower bounds for the CETSP is a nontrivial task that is beyond the

scope of this paper.

3. Steiner-Zone Heuristic
In the CETSP, a tour must cross a disk of radius r surrounding every node and visit the
representative point selected for each disk as shown in Figure 3. Note that for any tour,
a representative point in a disk’s interior can always be replaced by a point on the disk’s
boundary without changing the tour length. In Figure 4, we show how different choices of
representative points affect the edge distance between nodes i and j. Node i is a fixed point
in the plane at coordinate (ai, bi). We refer to the disk surrounding node i as disk(i). Any
tour that touches or passes through disk(i) successfully visits node i (with the exception of
the depot (node 0) which has no disk). We denote the center of disk(i) as orig(i), the origin of
disk(i), to emphasize that each node is the center of a disk. We assume that orig(i) �= orig(j)
for all i and j.
A Steiner zone of degree k, denoted SZ(k), is the nonempty intersection of k convex

regions. In this case, the regions are disks. A supernode is any point that simultaneously

Figure 3. A four-node CETSP instance and solution depicting the representative point chosen for
each disk.

j

k

i

Note. For this set of tour edges, nodes j and k have only one feasible representative point while node i can
be represented by any point in the edge crossing i’s disk.

Mennell, Golden, and Wasil: Close-Enough TSP
166 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure 4. Edges connecting two possible sets of representative points for nodes i and j.

i j

(xj,yj)

(xj,yj)

(xi,yi)

(xi,yi)

Note. To minimize tour length, representative points must be chosen carefully.

visits more than one node. SZ(k) contains all possible supernodes for its k member nodes,
as shown in Figure 5. A Steiner zone of degree 1, SZ(1), is called a singleton. For each SZ(k),
we designate the node upon which it is built as that Steiner zone’s base node; the need for
a base node will become clear in the next paragraph. For example, node i is the base node
for the SZ(k) in Figure 5. Since a point in a Steiner zone is not in general one of the original
nodes to be visited and yet a visit to this point may reduce the total length, we envision
these zones affecting the TSP as Steiner points affect the minimal spanning tree problem.
The name Steiner zone comes from this observation.
An SZ(k) with base node i is characterized by two polar angles, relative to orig(i), with

which the other k−1 disks intersect disk(i), and the origins of the k−1 disks. The two angles
are called upper and lower angles of intersection and are easily generated. For k ≥ 3, the
angles of intersection are obtained by comparing the angles of intersection for two Steiner
zones with base node i, an SZ(k−1) and an SZ(2). If the angles overlap, then the upper and
lower angles of that overlap become the upper and lower angles of intersection for the SZ(k).
For example, in Figure 6, the SZ(2) formed by disk(i) and disk(j), with base node i, has
lower and upper angles of intersection of 343◦ and 55◦, respectively. The SZ(2) formed by
disk(i) and disk(k), with base node i, has lower and upper angles of intersection of 299◦

and 8◦, respectively. The two sets of angles overlap such that the SZ(3) formed by disk(i),
disk(j), and disk(k), with base node i, has a lower angle of intersection of 343◦ and an
upper angle of intersection of 8◦. When two or more disks intersect at exactly one point,
the upper and lower angles of intersection are equal. As long as we know the base node
and the upper and lower angles of intersection, we can easily generate a point within r of

Figure 5. The shaded region defines a Steiner Zone of degree 3 with base node i and is
denoted SZ(3).

i

Note. SZ(3) is the intersection of the three disks.

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 167

Figure 6. The base node is i.

343º

8º
i

j

k

55
º

299º

Note. Only the lower (343◦) and upper (8◦) angles of intersection are required to specify the SZ(3) formed
by disk(i), disk(j), and disk(k).

each disk(i) within an SZ(k). In Figure 7, we show two Steiner zones of equal degree with
different size overlaps.
In Figure 8, we see that the larger the radius, the larger the potential savings in tour

length. For example, if r is very large, we can expect a much shorter optimal CETSP tour
than the optimal TSP tour. If r is near zero, an optimal CETSP result will be only slightly

Figure 7. The amount of disk overlap does not matter: The Steiner zone has degree 2 in both
cases.

(a) Large intersection (b) Small intersection

Figure 8. The nodes are the same in (a) and (b), but the radius is larger in (b).

100 120 140 160 180 200 220

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

100 150 200 250

–120

–100

–80

–60

–40

–20

0

20

(a) Overlap ratio 0.05 (b) Overlap ratio 0.2

Note. The larger the overlap ratio, the greater the potential savings.

Mennell, Golden, and Wasil: Close-Enough TSP
168 12th INFORMS Computing Society Conference, c© 2011 INFORMS

shorter than the optimal TSP solution. We define a metric, overlap ratio, to indicate how
much potential there is for improvement over the TSP solution. For a given CETSP, let
lcontain be the length of a side of the smallest square containing all n disks. The overlap ratio
is the ratio of r to lcontain. In Figure 8, we show two different overlap ratios for the same
set of nodes. We consider instances with an overlap ratio much larger than 0.3 uninteresting
because almost any set of Steiner zones can lead to a near-optimal solution of the CETSP.
Overlap ratio is not appropriate for problems which lie in an elongated rectangle rather than
a square, but it provides an indication of how much improvement is possible.
Our Steiner-zone heuristic, denoted by SZH, reduces a graph of n nodes to a graph of m

Steiner zones, sequences the m zones, and locates the best representative point for each zone
given the tour sequence. Node 0 is the depot and cannot be part of any Steiner zone. We
now describe the three phases of SZH in detail.

3.1. Phase I—Graph Reduction
We describe two approaches to graph reduction. The first is a slow, naive heuristic and the
second an improved, faster version of the first. We begin by sorting the nodes and storing
them in a list, denoted list. Because the second version is so fast, we run the entire SZH
repeatedly, once for each of four different sorts: closest to and furthest from the depot, and
closest to and furthest from the centroid of the graph. We select the first node in list, say i,
and identify all Steiner zones that node i can form, storing them in a list called SZ listi.
To do this, we consider all other nodes and calculate their angles of intersection with i,
if possible. Let SZij denote the SZ(2) formed between nodes i and j. We compare SZij

with all previously identified Steiner zones already in SZ listi. Whenever SZij ’s angles of
intersection overlap those of a Steiner zone in SZ listi, we form a new Steiner zone from their
intersection. SZY listi is ordered from highest degree to lowest degree. That is, the Steiner
zones capturing the intersection of a large number of disks are stored before those describing
the intersections of fewer disks. Steiner zones of equal degree are ordered lexicographically.
For example, an SZ(3) consisting of nodes 1, 5, and 6 would be ordered prior to an SZ(3)
consisting of nodes 1, 6, and 9. With this ordering, we can easily locate a particular Steiner
zone in SZ listi. To avoid a long search through SZ listi, we use bookmarks that store the
location of the first Steiner zone in the list of each degree, k, for small values of k.
Consider the following example. We have selected node 1 from list and have compared

it with nodes 2 through 5, such that SZ list1 is: {1,2,3}, {1,2}, {1,3}. Considering node 6
next, we find that nodes 1 and 6 form an SZ(2). The lower and upper angles of intersection
are 40◦ and 130◦. We compare these angles against the angles of intersection for the three
Steiner zones already in SZ list1 and find that {1,6} overlaps {1,2,3}. We have found a new
Steiner zone, {1,2,3,6} and must add it to the list along with all sub-Steiner zones associated
with it. SZ list1 now looks like: {1,2,3,6}, {1,2,3}, {1,2,6}, {1,3,6}, {1,2}, {1,3}, {1,6}.
After constructing all Steiner zones for node i, we store the highest degree Steiner zone in
set SZ set for later use, and remove its nodes from list. This is repeated until list =∅. When
there are no nodes to consider, a set of Steiner zones remains, SZ set, such that any tour
visiting each of these Steiner zones is a feasible solution to the CETSP.
In Figure 9, we illustrate the shortcoming of this naive approach to graph reduction.

Assume B =SZ(k) is found, where k is an integer larger than three. There is a set of unique
sub-Steiner zones of degrees k−1, k−2, . . . ,2, such that all members of the set contain B and
may or may not have been identified yet. Therefore, we must identify all of them individually.
As k grows, the number of possible sub-Steiner zones to identify grows exponentially. The
vast majority of them, however, are contained in other larger Steiner zones and are thus
redundant: this creates giant lists of Steiner zones to store and search. Early experiments
confirmed that this approach to graph reduction is computationally expensive. Because of
the large number of sub-Steiner zones that must be identified, a large amount of computation
time (on the order of days) is needed to find Steiner zones of degree as small as 20.

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 169

Figure 9. B is an SZ(6).

When B is created, how many
potentially new Steiner zones
would the naive method find?

BDegree 2: 6
10
10
4
1

Degree 3:
Degree 4:
Degree 5:
Degree 6:

Total 31

Note. In the naive Phase I heuristic, all of B’s sub-Steiner zones would be examined; in general, the number
of sub-Steiner zones explored to find each new SZ(k) with this heuristic grows exponentially with k.

Our second approach to Phase I differs from the naive heuristic only in its treatment
of sub-Steiner zones. In addition to adding B to SZ listi, we add only those sub-Steiner
zones of B that have degree no greater than three and have not previously been added.
In computational experiments, our second approach identifies Steiner zones with degrees in
the hundreds in less than a second. The sub-Steiner zones of degree two and three seem to
act as a suitable seedbed upon which to construct the Steiner zones of large degree. The
choice of three as a cut-off value is arbitrary. In our experience, using a larger value slows
the graph reduction without finding Steiner zones of much higher degree.
In Figure 10, we show the optimal TSP tour for a 200-node problem described in

Mennell [14] as team2 200. In Figure 11, we show the Steiner zones that result from apply-
ing Phase I to team2 200. The Steiner zones happen to be disjoint. However, the Phase I
algorithm does not explicitly require or encourage disjoint Steiner zones, though they are
typically so.

3.2. Phase II—Tour Finding
The result of applying Phase I to graph G is graph G′. G′ is a graph of Steiner zones rather
than nodes. We designate a point in each Steiner zone as its representative point and solve
a TSP on these points.

Figure 10. A 200-node CETSP instance (team2 200) with the optimal TSP solution shown.

100 120 140 160 180 200 220

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

Note. Tour length is about 1,074.

Mennell, Golden, and Wasil: Close-Enough TSP
170 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure 11. The solution to Phase I for the team2 200 instance.

100 120 140 160 180 200 220 240
–120

–100

–80

–60

–40

–20

0

Note. The 200 nodes have been reduced to 16 Steiner zones.

Given an SZ(k) with base node i and k ≥ 2, a chord may be drawn connecting the points
on disk(i) at the upper and lower angles of intersection. Because the intersection of convex
sets is convex and an SZ(k) is the intersection of k convex sets (disks), any point along
this chord (we select the midpoint of the chord) must lie within the SZ(k). We show this in
Figure 12.
For singletons, we choose the point on the disk’s boundary closest to the depot. A well-

known method, such as the Concorde TSP Solver [3], Applegate et al. [1], can be used to
find the TSP tour on this set of points. The result is a feasible solution for the CETSP.
Note that many TSP solvers require integer node coordinates. Our test problems do not
have integer coordinates. This obstacle is easy to overcome (see Mennell [14] for details).

3.3. Phase III—Tour Improvement
The result of applying Phase II to G′ is a feasible solution to the CETSP. The sequence
in which the tour visits the Steiner zones is fixed, but the location of each Steiner zone’s
representative point can still be modified. In Figure 13, we show the results after applying
Phase II to team2 200. We notice that: (1) the tour length is much less than the tour length
of the optimal TSP solution, and (2) the tour could be shortened by changing the placement

Figure 12. An example calculation of a Steiner zone representative point.

i

j

Notes. The base node for this Steiner zone is node i. The boundary of disk(j) has at most two points
of intersection with the boundary of disk(i). The representative point is the midpoint of the chord that
connects the two points of intersection.

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 171

Figure 13. The solution to Phase II for the team2 200 instance.

100 120 140 160 180 200 220 240
–120

–100

–80

–60

–40

–20

0

Notes. After selecting a single point to represent each Steiner zone found in Phase I, a TSP tour is found.
The tour length is about 435.

of representative points for each Steiner zone. Given the sequence of Steiner zones produced
by Phase II, we solve the Touring Polygons Problem (TPP) described in Dror et al. [5]
to determine the optimal placement of the representative points. We call this the Touring
Steiner Zones Problem (TSZP) since we consider convex regions (Steiner zones) instead of
polygons. Given a tour on a set of disks, the TSZP minimizes the distance such that each
Steiner zone (and thus each disk) remains feasibly covered and the sequence of Steiner zones
visited remains unchanged.
We can formulate the TSZP as a second-order cone program (SOCP) and solve it to

optimality using CPLEX. Our heuristic approach, denoted IPPhIII, is briefly described below
and illustrated by means of an example in A. Both methods are examined in detail in
Mennell [14].
IPPhIII utilizes two initialization iterations, 1 and 2, to find a 60◦ bounded region on each

Steiner zone’s boundary where the optimal representative point is likely to be. In iteration 1,
we replace each Steiner zone with the three points on its boundary with polar angles 0◦,
120◦, and 240◦ relative to its representative point. In iteration 2, we choose the points at 60◦,
180◦, and 300◦. This ensures that the bounded region produced for each Steiner zone spans
60◦ of its boundary. Letting the depot represent both the departure and destination point,
we find the shortest path for the network in iteration 1 and the shortest path for the network
in iteration 2.
For iterations k ≥ 3, we use the solution points from the previous two iterations to con-

verge towards a near-optimal solution where the representative points are typically, but not
restricted to be, in the 60◦ bounded regions produced by iterations 1 and 2. We replace each
Steiner zone with three points and solve the shortest path problem on the resulting network.
For each Steiner zone, we let the first point be the solution point chosen in iteration k − 1,
the second point be the solution point chosen in iteration k − 2, and the third point be the
point on the Steiner zone’s boundary at the polar angle bisecting the other two points. We
illustrate this in Figure 14. If the same points were chosen in iterations k − 1 and k − 2,
then points two and three are chosen from the Steiner zone’s boundary on either side of the
point chosen in iteration k − 1 (except in iteration 5—see Mennell [14]). IPPhIII typically
converges to a satisfactory level by iteration 10, but more or fewer iterations may be used.
In Figure 15, we show the solution to team2 200 after solving Phase III with IPPhIII. We

point out that a single run of SZH involves a complete iteration of the Phase I–Phase II–
Phase III cycle for each of the four sorting criteria mentioned in §3.1 (we found that

Mennell, Golden, and Wasil: Close-Enough TSP
172 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure 14. Choosing the third point to approximate SZi in IPPhIII.

i

Notes. The circle is the representative point for SZi. The squares pointed at by solid lines illustrate the points
selected by the previous two iterations of IPPhIII. The third point used to approximate SZi in the next
iteration is the triangle pointed at by the dashed arrow. This point lies on the boundary of SZi at the angle
bisecting the other two points.

at least one of the four always produced a shorter tour than a single run using a random
ordering).

4. Heuristics
We coded 15 CETSP solution methods for comparison purposes.
SZ1 and SZ2 are variants of SZH. SZ1 applies the IPPhIII heuristic to solve Phase III.

After Phase III, we re-apply Phase II and stop. SZ1 emphasizes computational speed over
tour length. SZ2 solves Phase III to optimality using the SOCP formulation. SZ2 repeats
the Phase II–Phase III cycle until no improvement is found. SZ2 emphasizes tour length
over computational speed.
LK-SOCP finds a near-optimal TSP tour on the original n nodes using the Concorde

(Concorde TSP Solver [3], Applegate et al. [1]) implementation of the Lin-Kernighan heuris-
tic (Lin and Kernighan [13]) and then minimizes the distance of the tour by solving the
SOCP formulation to optimality. That is, LK-SOCP solves Phases II and III of SZH. It does
not use Steiner zones.
YUAN+ finds the optimal TSP tour on the original n nodes using Concorde (Concorde

TSP Solver [3]) and then minimizes the distance of the tour by solving the SOCP formulation
to optimality. YUAN+ differs from LK-SOCP only in that Phase II is solved to optimality

Figure 15. The solution to Phase III for the team2 200 instance.

100 120 140 160 180 200 220 240
–120

–100

–80

–60

–40

–20

0

Note. The final tour length is about 304.

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 173

whereas LK-SOCP finds a heuristic solution. We think of YUAN+ as an improved version
of the algorithm given in Yuan et al. [20]. Their algorithm finds the optimal TSP tour
but solves Phase III with an evolutionary algorithm. The evolutionary algorithm does not
guarantee the optimality of the Phase III solution whereas the solution to the SOCP solved
in YUAN+ is the optimal Phase III solution.
GTSP1 finds near-optimal solutions to a generalized TSP (GTSP) approximation of the

CETSP using a genetic algorithm developed by Silberholz and Golden [19]. On average,
their algorithm was only 0.03% from optimality on the standard GTSP test problems (up
to 442 total nodes) and found new best solutions for the larger problems with unknown
optimal solutions. Our GTSP problem sizes range from 2,400 nodes to 24,000 nodes plus
the depot.
By replacing each disk with k points, we create a GTSP where there are n clusters to

be visited, each with k possible points to choose from. We used 3-, 6-, 12-, and 24-point
approximations of each disk. Only the 24-point approximations were competitive, however,
so we do not report on the 3-, 6-, and 12-point approximations.
Because GTSP1 solves a discrete approximation of the CETSP, we can improve upon

it by fixing the sequence of disks in the GTSP1 tour and solving Phase III to optimality
with the SOCP. This is what GTSP2 does. In Figure 16, we show the difference between a
GTSP1 solution and a GTSP2 solution for a problem with high overlap ratio.
HYBRID1 and HYBRID2 are hybrid algorithms that combine SZH with the GTSP

approximation of the CETSP. HYBRID1 and HYBRID2 apply Phase I of SZH to reduce the
graph of n nodes tom Steiner zones. The boundary of each Steiner zone is discretely approxi-
mated by 24 points and a GTSP is solved on the set ofm+1 clusters and 24m+1 points (the
depot is a cluster containing exactly one point). Phase III of SZH is applied to the GTSP
solution, with HYBRID1 using the IPPhIII heuristic and HYBRID2 solving to optimality
with the SOCP. The GTSP and Phase III are solved only once.
CTD, circular trapezoidal decomposition, applies a modified trapezoidal decomposition

algorithm of Mulmuley [16] to subdivide a graph of disks into nonoverlapping regions such
that each region is bordered on the left and right by vertical lines and on the top and bottom
by arcs of a disk. We show such a subdivision in Figure 17. We compute the degree of each
distinct subdivision in the graph and greedily select the regions with the highest degree until
the n original nodes are covered. We apply Phase II to the selected subdivisions and solve
Phase III to optimality using the SOCP formulation. See Mennell [14] for more details.
TILE1, TILE2, TILE3, and TILE4 use the shifted tiling method from Gulczynski

et al. [11]. The plane is tiled with regular hexagons. Every node is no more than r units from

Figure 16. Solutions produced by the two GTSP-based heuristics for a 500-node CETSP.

110 115 120 125 130 135

–20

–15

–10

–5

0

110 115 120 125 130 135

–20

–15

–10

–5

0

(b) GTSP2(a) GTSP1

Notes. GTSP2 solves Phase III to optimality on the sequence of nodes in the GTSP1 tour. In this example,
the improvement is substantial because the overlap ratio is large (0.3).

Mennell, Golden, and Wasil: Close-Enough TSP
174 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure 17. An example of the circular trapezoidal decomposition of a graph of disks.

Note. Every point inside bounded region i of the decomposition has the same degree of intersection.

the center of at least one hexagon. Tile centers are shifted a small step-size in an attempt to
reduce the number of tiles needed to cover all n nodes. A TSP is solved on centers of tiles
that contain nodes and the tour distance is then further minimized using a heuristic.
The authors of Gulczynski et al. [11] provided their code for use in our experiments.

Their code uses a genetic algorithm to solve Phase II. To ensure a fair comparison with our
heuristics, TILE1 and TILE3 solve Phase II to optimality using the Concorde TSP Solver [3].
TILE2 and TILE4 find TSP tours using the chained Lin-Kernighan code from Concorde
(Concorde TSP Solver [3]). TILE1 and TILE2 set the step-size equal to the disk radius.
TILE3 and TILE4 set the step-size to 50 for all problems. This ensures that problems with
a small radius spend as much effort finding supernodes as problems with a large radius.
MERGE and HULL are the merged tiling heuristic and the convex-hull heuristic, respec-

tively, given in Dong et al. [4]. MERGE tiles the plane with regular hexagons so that each
node is no more than r units from the center of at least one hexagon. If all nodes in a pair
of adjacent hexagons can be covered by a single one, the two hexagons are merged. HULL
creates a set of supernodes that cover the n original nodes using a convex-hull-based heuris-
tic. MERGE and HULL solve a TSP on the supernodes using simulating annealing and
further minimize the distance of the tour by perturbing the location of each supernode and
resolving the TSP. The authors provided versions of their code optimized for computational
speed to use in our experiments.

5. Computational Results
We selected seven TSPs from TSPLIB [17] that ranged in size from 100 to 1,000 nodes. Two
problems have clustered nodes, one has nodes arranged in rough lines, two have uniformly
distributed nodes, and two are drill-press problems. In order to create CETSPs from the
TSPs, we assigned three different radius patterns: (1) the overlap ratio is 0.02 (very low),
(2) the overlap ratio is 0.1 (moderate), and (3) the overlap ratio is 0.3 (very high). In a
problem, the radius is the same for all disks. We refer to these as TSPLIB problems. We used
the implementation of the Lin-Kernighan TSP solver provided in the Concorde software
package. All problem data and the complete set of results, including the best-known solution
for each problem, are given in Mennell [14].
We did not test our heuristic against the heuristic described in Shuttleworth et al. [18].

They solve the CETSP over a street network (the triangle inequality does not hold). None

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 175

of the algorithms in our experiments were designed to work for the CETSP over a street
network.
All experiments were performed on a 2.4 GHz Pentium machine with 3 GB RAM running

Windows XP Professional. We note that different computers have different floating-point
architectures. Very small numerical differences can add up over a computation and affect
the outcome of SZH. Thus, for a small number of problems, we obtained a different solution
for the same problem on different computers. All solutions are checked for feasibility. All
methods use the same code to solve Phase III. Except for the genetic algorithm and the
hybrid heuristics, all solution methods use the same code to solve Phase II. No special
attention was given to the Steiner-zone methods to improve performance. In the first table,
bold font indicates the best value. Computation time is given in CPU seconds.
The tour-length results for the 15 heuristics on the seven TSPLIB problems using three

overlap ratios and the Euclidean norm are given in Table 1. The average deviations from
the best solutions in Table 1 are given in Table 2. Columns in both tables are ordered by
the overall average deviation from best (left) to worst (right).
In Table 1, for the seven low overlap problems, GTSP2 produces all the shortest tours.

For the seven medium overlap problems, GTSP2 produces the shortest tour five times. For
the seven high overlap problems, LK-SOCP and YUAN+ each produce the shortest tours
four times.
In Table 2, we see that, on average, GTSP2 and GTSP1 produce the smallest deviations

(0.00% and 0.55%) for problems with a low overlap ratio. For problems with a medium
overlap ratio, GTSP2 produces the smallest average (3.58%). For problems with a high over-
lap ratio, HYBRID2 and SZ2 produce the smallest average deviations (0.77% and 0.95%).
GTSP2 and GTSP1 produce the largest deviations (40.62% and 103.50%). rd400 and pcb442
are challenging problems for all heuristics except for GTSP1 and GTSP2.
Over all 21 problems, the four methods that find Steiner zones using Phase I of SZH

(HYBRID2, HYBRID1, SZ2, SZ1) have the lowest overall average deviations, ranging from
3.22% to 4.24%.
In Table 3, we give the computation times for the 15 heuristics on the TSPLIB problems.

The columns are ordered from fastest (left) to slowest (right). All heuristics except for CTD,
TILE1, TILE2, YUAN+, and LK-SOCP achieve faster times as the overlap ratio increases.
CTD slows down because the trapezoidal decomposition takes much more time to compute
as the overlap ratio increases. The running times for TILE1 and TILE2 are linked to the
overlap ratio by the stepsize parameter (the radius, r, is the stepsize) so that higher overlap
ratios lead to longer computation times. The running times for YUAN+ and LK-SOCP
remain relatively constant over all overlap ratios. For methods that apply Phase I, the size of
the TSP solved in Phase II decreases as the overlap ratio increases. YUAN+ and LK-SOCP
do not apply Phase I, so their running times do not decrease as the overlap ratio increases.
HULL, MERGE, LK-SOCP, SZ1, and SZ2 are very fast, taking one-third to one and

one-half seconds on average to solve a problem. The two methods based on the generalized
TSP (GTSP1, GTSP2) are computationally expensive. They take an exorbitant amount
of time to solve problems (on the order of several months for the largest problems!). The
hybrid methods (HYBRID1, HYBRID2), though not as slow as the GTSP methods, are
much slower than the other 11 methods.
We also used the Manhattan norm on the 21 TSPLIB test problems and found that

HYBRID2, HYBRID1, SZ2, and SZ1 were the best methods based on overall accuracy.
Computation times were comparable to the Euclidean results. The complete details are
given in Mennell [14].
Based on the computational experiments with the TSPLIB problems using the Euclidean

norm, we observe the following. (1) As the overlap ratio increases from low to high, tour
length decreases in almost all cases (except for GTSP1 on problems rat195, d493, and
dsj1000), and computation times decrease for many heuristics, including the Steiner-zone

Mennell, Golden, and Wasil: Close-Enough TSP
176 12th INFORMS Computing Society Conference, c© 2011 INFORMS

T
a
bl

e
1.
T
ou
r
le
ng
th
s
fo
r
15
he
ur
is
ti
cs
on

T
SP
L
IB
pr
ob
le
m
s
w
it
h
eq
ua
l
ra
di
us
an
d
2D

E
uc
lid
ea
n
no
rm
.

H
Y

B
R

ID
2

H
Y

B
R

ID
1

SZ
2

SZ
1

C
T

D
Y

U
A

N
+

L
K

-S
O

C
P

G
T

SP
2

T
IL

E
2

T
IL

E
3

T
IL

E
1

T
IL

E
4

H
U

L
L

M
E

R
G

E
G

T
SP

1

O
ve

rl
ap

ra
ti

o:
0.

02
kr

oD
10

0
16

0.
46

16
0.

88
16

3.
76

16
3.

78
16

5.
30

16
4.

31
16

4.
31

1
5
9
.0

5
17

2.
84

17
0.

88
17

3.
05

17
0.

32
21

0.
03

18
8.

07
15

9.
28

ra
t1

95
16

4.
51

16
5.

37
17

1.
29

17
1.

35
17

0.
33

17
0.

89
17

2.
51

1
5
8
.7

9
18

7.
37

18
1.

99
19

0.
00

18
8.

76
22

9.
23

18
9.

12
15

9.
08

lin
31

8
2,

90
3.

26
2,

91
4.

47
2,

94
1.

00
2,

94
1.

53
2,

94
6.

25
2,

94
9.

71
3,

00
3.

94
2
,8

6
7
.4

6
3,

21
7.

70
3,

19
1.

60
3,

18
3.

20
3,

15
5.

60
3,

82
4.

50
3,

26
1.

49
2,

87
5.

34
rd

40
0

1,
03

9.
29

1,
04

2.
62

1,
06

6.
16

1,
06

6.
44

1,
08

1.
09

1,
06

9.
26

1,
06

6.
15

1
,0

3
3
.4

2
1,

18
0.

50
1,

16
4.

00
1,

17
7.

90
1,

16
6.

60
1,

51
3.

97
1,

24
3.

61
1,

03
5.

95
p

cb
44

2
32

7.
26

32
8.

72
33

3.
23

33
3.

27
33

9.
19

34
0.

59
35

1.
61

3
2
3
.0

3
37

1.
53

35
9.

93
35

9.
47

36
6.

64
45

0.
22

40
1.

09
32

4.
21

d4
93

20
9.

82
21

1.
05

21
3.

50
21

3.
64

21
2.

73
22

1.
41

21
7.

82
2
0
4
.7

1
23

0.
83

22
7.

55
23

1.
85

23
6.

76
26

1.
70

24
9.

62
20

6.
77

ds
j1

00
0

99
8.

35
1,

01
5.

30
1,

01
0.

82
1,

01
2.

71
99

6.
84

1,
00

5.
80

1,
01

0.
43

9
3
5
.7

4
1,

15
6.

60
1,

15
6.

20
1,

14
1.

10
1,

14
0.

00
1,

45
6.

97
1,

26
6.

38
95

1.
09

O
ve

rl
ap

ra
ti

o:
0.

1
kr

oD
10

0
96

.6
8

97
.5

8
96

.6
8

97
.0

9
95

.2
1

95
.6

4
95

.6
4

8
9
.9

4
10

2.
49

11
6.

63
11

5.
81

11
4.

81
10

7.
85

12
1.

88
91

.5
3

ra
t1

95
73

.8
9

74
.4

1
74

.1
6

74
.2

2
74

.6
7

77
.6

6
88

.4
4

6
8
.2

6
87

.7
4

82
.3

4
84

.1
2

84
.4

5
85

.8
3

90
.8

1
72

.2
5

lin
31

8
1,

55
4.

59
1,

56
3.

48
1,

55
6.

82
1,

55
7.

47
1,

52
9.

60
1,

55
7.

07
1,

47
1.

93
1
,4

6
7
.0

3
1,

71
1.

80
1,

84
2.

00
1,

64
6.

80
1,

67
9.

50
1,

88
6.

08
1,

82
8.

95
1,

55
5.

56
rd

40
0

52
1.

91
52

6.
96

52
1.

91
52

6.
73

53
5.

04
52

8.
13

54
2.

43
4
7
3
.7

0
58

4.
86

60
2.

22
62

3.
32

60
1.

34
59

3.
45

60
8.

71
49

8.
51

p
cb

44
2

16
1.

77
16

2.
61

16
2.

26
16

2.
73

15
8.

41
21

4.
50

20
9.

68
1
4
7
.2

4
18

5.
63

17
9.

91
18

0.
30

18
6.

02
17

7.
65

19
7.

41
15

9.
06

d4
93

11
0.

75
11

0.
98

11
0.

90
11

1.
03

1
0
8
.2

2
11

4.
16

12
2.

04
11

2.
55

11
5.

05
11

9.
74

12
1.

24
11

5.
65

11
2.

37
12

4.
89

13
3.

81
ds

j1
00

0
4
0
4
.6

0
40

8.
69

4
0
4
.6

0
40

6.
91

43
0.

94
46

4.
26

39
8.

78
48

2.
85

45
5.

71
42

9.
90

44
7.

28
44

5.
21

46
2.

72
51

5.
66

63
2.

79

O
ve

rl
ap

ra
ti

o:
0.

3
kr

oD
10

0
5
8
.5

4
58

.6
9

5
8
.5

4
5
8
.5

4
58

.7
0

5
8
.5

4
5
8
.5

4
62

.1
5

61
.4

5
61

.4
5

61
.4

5
61

.4
5

64
.5

5
78

.4
5

71
.3

2
ra

t1
95

45
.7

9
45

.9
1

45
.7

9
45

.9
1

45
.8

2
4
5
.7

0
45

.7
4

48
.1

9
52

.1
1

52
.7

9
51

.8
2

52
.9

7
52

.9
2

58
.1

5
75

.0
4

lin
31

8
77

2.
61

78
0.

56
78

2.
40

78
2.

96
80

3.
37

77
6.

58
7
6
5
.9

6
94

6.
67

80
9.

06
80

9.
06

80
9.

06
80

9.
06

81
4.

65
1,

11
6.

14
1,

30
4.

03
rd

40
0

23
3.

29
23

7.
59

23
3.

29
23

3.
75

24
1.

30
2
2
8
.9

5
22

9.
11

34
8.

99
29

4.
05

30
0.

32
29

8.
04

30
0.

32
23

9.
87

25
5.

27
44

5.
58

p
cb

44
2

8
5
.1

2
85

.1
7

8
5
.1

2
85

.1
8

85
.4

1
10

0.
72

10
6.

32
12

6.
21

93
.6

0
93

.6
4

93
.6

0
91

.7
1

88
.7

7
89

.8
2

15
5.

40
d4

93
70

.7
5

70
.8

4
70

.7
5

70
.8

4
75

.3
8

6
9
.7

6
6
9
.7

6
82

.8
3

80
.7

1
80

.0
9

78
.9

4
82

.8
9

73
.1

9
76

.9
5

14
8.

97
ds

j1
00

0
20

1.
92

20
3.

08
20

1.
92

20
1.

95
20

9.
86

20
4.

16
1
9
9
.9

5
45

9.
22

21
4.

87
21

4.
38

21
4.

87
21

4.
38

21
9.

71
27

7.
26

75
4.

84

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 177

T
a
bl

e
2.
P
er
ce
nt
ag
e
de
vi
at
io
n
fr
om

th
e
be
st
so
lu
ti
on
fo
r
15
he
ur
is
ti
cs
on

T
SP
L
IB
pr
ob
le
m
s
w
it
h
eq
ua
l
ra
di
us
an
d
2D

E
uc
lid
ea
n
no
rm
.

H
Y
B
R
ID
2
H
Y
B
R
ID
1

SZ
2

SZ
1

C
T
D

Y
U
A
N
+

L
K
-S
O
C
P
G
T
SP
2
T
IL
E
2
T
IL
E
3
T
IL
E
1
T
IL
E
4
H
U
L
L
M
E
R
G
E
G
T
SP
1

O
ve
rl
ap
ra
ti
o:
0.
02

kr
oD
10
0

0.
89

1.
15

2.
96

2.
97

3.
93

3.
31

3.
31

0.
00

8.
67

7.
43

8.
80

7.
09

32
.0
5

18
.2
4

0.
14

ra
t1
95

3.
60

4.
14

7.
87

7.
91

7.
27

7.
62

8.
64

0.
00

18
.0
0

14
.6
1

19
.6
5

18
.8
7

44
.3
6

19
.1
0

0.
18

lin
31
8

1.
25

1.
64

2.
56

2.
58

2.
75

2.
87

4.
76

0.
00

12
.2
1

11
.3
0

11
.0
1

10
.0
5

33
.3
8

13
.7
4

0.
27

rd
40
0

0.
57

0.
89

3.
17

3.
20

4.
61

3.
47

3.
17

0.
00

14
.2
3

12
.6
4

13
.9
8

12
.8
9

46
.5
0

20
.3
4

0.
24

pc
b4
42

1.
31

1.
76

3.
16

3.
17

5.
00

5.
44

8.
85

0.
00

15
.0
1

11
.4
2

11
.2
8

13
.5
0

39
.3
7

24
.1
6

0.
37

d4
93

2.
50

3.
10

4.
29

4.
36

3.
92

8.
16

6.
40

0.
00

12
.7
6

11
.1
6

13
.2
6

15
.6
6

27
.8
4

21
.9
4

1.
01

ds
j1
00
0

6.
69

8.
50

8.
02

8.
23

6.
53

7.
49

7.
98

0.
00

23
.6
0

23
.5
6

21
.9
5

21
.8
3

55
.7
0

35
.3
4

1.
64

A
ve
ra
ge
:

2.
40

3.
03

4.
58

4.
63

4.
86

5.
48

6.
16

0.
00

14
.9
3

13
.1
6

14
.2
8

14
.2
7

39
.8
9

21
.8
4

0.
55

O
ve
rl
ap
ra
ti
o:
0.
1

kr
oD
10
0

7.
49

8.
49

7.
49

7.
95

5.
86

6.
34

6.
34

0.
00

13
.9
5

29
.6
8

28
.7
6

27
.6
5

19
.9
1

35
.5
2

1.
77

ra
t1
95

8.
25

9.
01

8.
64

8.
73

9.
39

13
.7
7

29
.5
6

0.
00

28
.5
4

20
.6
3

23
.2
3

23
.7
2

25
.7
4

33
.0
4

5.
85

lin
31
8

5.
97

6.
57

6.
12

6.
16

4.
27

6.
14

0.
33

0.
00

16
.6
8

25
.5
6

12
.2
5

14
.4
8

28
.5
6

24
.6
7

6.
03

rd
40
0

10
.1
8

11
.2
4

10
.1
8
11

.1
9
12

.9
5

11
.4
9

14
.5
1

0.
00

23
.4
7

27
.1
3

31
.5
9

26
.9
5

25
.2
8

28
.5
0

5.
24

pc
b4
42

9.
87

10
.4
4

10
.2
0
10

.5
2

7.
59

45
.6
8

42
.4
1

0.
00

26
.0
7

22
.1
9

22
.4
5

26
.3
4

20
.6
5

34
.0
7

8.
03

d4
93

2.
34

2.
55

2.
48

2.
60

0.
00

5.
49

12
.7
7

4.
00

6.
31

10
.6
5

12
.0
3

6.
86

3.
83

15
.4
1

23
.6
5

ds
j1
00
0

1.
46

2.
49

1.
46

2.
04

8.
06

16
.4
2

0.
00

21
.0
8

14
.2
8

7.
80

12
.1
6

11
.6
4

16
.0
3

29
.3
1

58
.6
8

A
ve
ra
ge
:

6.
51

7.
26

6.
65

7.
03

6.
87

15
.0
5

15
.1
3

3.
58

18
.4
7

20
.5
2

20
.3
5

19
.6
6

20
.0
0

28
.6
4

15
.6
1

O
ve
rl
ap
ra
ti
o:
0.
3

kr
oD
10
0

0.
00

0.
26

0.
00

0.
00

0.
27

0.
00

0.
00

6.
17

4.
97

4.
97

4.
97

4.
97

10
.2
7

34
.0
2

21
.8
3

ra
t1
95

0.
19

0.
46

0.
19

0.
46

0.
26

0.
00

0.
08

5.
44

14
.0
2

15
.5
2

13
.3
9

15
.9
1

15
.8
0

27
.2
4

64
.2
0

lin
31
8

0.
87

1.
91

2.
15

2.
22

4.
88

1.
39

0.
00

23
.5
9

5.
63

5.
63

5.
63

5.
63

6.
36

45
.7
2

70
.2
5

rd
40
0

1.
90

3.
77

1.
90

2.
10

5.
39

0.
00

0.
07

52
.4
3

28
.4
3

31
.1
7

30
.1
8

31
.1
7

4.
77

11
.5
0

94
.6
2

pc
b4
42

0.
00

0.
06

0.
00

0.
07

0.
34

18
.3
2

24
.9
1

48
.2
7

9.
96

10
.0
1

9.
96

7.
75

4.
28

5.
52

82
.5
7

d4
93

1.
42

1.
55

1.
42

1.
55

8.
06

0.
00

0.
00

18
.7
4

15
.7
0

14
.8
1

13
.1
7

18
.8
3

4.
91

10
.3
0

11
3.
55

ds
j1
00
0

0.
99

1.
57

0.
99

1.
00

4.
96

2.
11

0.
00

12
9.
67

7.
46

7.
22

7.
46

7.
22

9.
88

38
.6
7

27
7.
51

A
ve
ra
ge
:

0.
77

1.
37

0.
95

1.
06

3.
45

3.
12

3.
58

40
.6
2

12
.3
1

12
.7
6

12
.1
1

13
.0
7

8.
04

24
.7
1

10
3.
50

O
ve
ra
ll
av
er
ag
e:

3.
22

3.
88

4.
06

4.
24

5.
06

7.
88

8.
29

14
.7
3

15
.2
4

15
.4
8

15
.5
8

15
.6
7

22
.6
4

25
.0
6

39
.8
9

Mennell, Golden, and Wasil: Close-Enough TSP
178 12th INFORMS Computing Society Conference, c© 2011 INFORMS

T
a
bl

e
3.
C
om
pu
ta
ti
on
ti
m
e
(C
P
U
se
co
nd
s)
fo
r
15
he
ur
is
ti
cs
on

T
SP
L
IB
pr
ob
le
m
s
w
it
h
eq
ua
l
ra
di
us
an
d
2D

E
uc
lid
ea
n
no
rm
.

H
Y

B
R

ID
2

H
Y

B
R

ID
1

SZ
2

SZ
1

C
T

D
Y

U
A

N
+

L
K

-S
O

C
P

G
T

SP
2

T
IL

E
2

T
IL

E
3

T
IL

E
1

T
IL

E
4

H
U

L
L

M
E

R
G

E
G

T
SP

1

O
ve

rl
ap

ra
ti

o:
0.

02
kr

oD
10

0
0.

23
5

0.
57

0
0.

10
9

0.
23

5
0.

32
8

0.
27

9
0.

42
7

3.
15

8
3.

27
5

0.
45

9
0.

93
8

78
.2

96
78

.9
06

66
5

66
6

ra
t1

95
0.

53
2

1.
45

3
0.

14
0

0.
48

4
0.

59
4

0.
44

7
1.

65
1

6.
64

5
8.

88
5

0.
82

1
25

.2
65

34
7.

57
8

34
4.

31
3

7,
78

0
7,

78
1

lin
31

8
0.

50
8

0.
29

7
0.

37
5

1.
54

7
1.

32
9

0.
90

9
13

.9
23

10
.6

86
26

.0
76

0.
99

1
6.

31
3

35
7.

01
5

34
9.

06
3

48
,5

43
48

,5
45

rd
40

0
1.

21
9

0.
64

9
0.

45
3

1.
25

0
1.

78
2

0.
65

9
5.

03
1

15
.2

17
17

.2
32

1.
30

8
61

.3
28

1,
25

4.
54

7
1,

22
5.

76
5

76
,0

07
76

,0
10

p
cb

44
2

1.
26

6
1.

49
2

0.
65

7
1.

23
5

1.
48

5
3.

22
3

51
.1

03
20

.1
72

73
.7

10
1.

51
1

52
.0

94
20

,2
89

.5
79

24
,6

25
.9

69
22

2,
04

3
22

2,
04

7
d4

93
0.

47
7

1.
21

1
0.

86
0

1.
42

2
2.

68
8

0.
82

5
1.

96
2

16
.3

44
18

.6
77

1.
89

3
86

.7
96

34
8.

87
5

32
2.

60
9

30
9,

06
7

30
9,

07
1

ds
j1

00
0

1.
11

7
1.

04
0

2.
29

7
3.

96
9

8.
71

8
2.

27
0

10
.5

58
57

.7
31

75
.4

71
2.

09
1

50
9.

51
5

1,
47

4.
32

8
1,

87
6.

62
5

12
,6

82
,5

39
12

,6
82

,5
45

A
ve

ra
ge

:
0.

76
5

0.
95

9
0.

69
9

1.
44

9
2.

41
8

1.
23

0
12

.0
93

18
.5

64
31

.9
04

1.
29

6
10

6.
03

6
3,

45
0.

03
1

4,
11

7.
60

7
1,

90
6,

66
3

1,
90

6,
66

6

O
ve

rl
ap

ra
ti

o:
0.

1
kr

oD
10

0
0.

13
3

0.
05

5
0.

09
3

0.
10

9
0.

25
0

0.
18

8
0.

20
4

2.
17

3
2.

17
2

0.
64

0
0.

53
2

6.
10

9
6.

43
8

1,
48

2
1,

48
3

ra
t1

95
0.

12
5

0.
09

4
0.

10
9

0.
18

7
0.

39
0

0.
20

4
0.

23
7

4.
29

2
4.

24
7

1.
77

9
25

.4
38

7.
81

2
8.

45
4

5,
94

9
5,

95
1

lin
31

8
0.

19
6

0.
06

3
0.

32
9

0.
31

3
0.

79
7

4.
98

2
5.

02
9

7.
24

2
7.

21
6

2.
45

8
6.

57
8

14
.9

53
15

.8
43

60
,2

49
60

,2
52

rd
40

0
0.

28
9

0.
06

3
0.

50
0

0.
40

7
0.

79
7

0.
56

6
0.

83
0

10
.1

71
10

.2
20

3.
02

1
60

.2
19

26
.3

75
27

.5
31

90
,9

99
91

,0
03

p
cb

44
2

0.
18

0
0.

06
3

0.
50

0
0.

43
7

1.
20

3
0.

22
4

0.
28

7
11

.6
64

11
.6

62
3.

45
0

51
.8

91
17

.4
07

20
.2

81
25

0,
48

2
25

0,
48

5
d4

93
0.

13
3

0.
11

0
0.

82
8

0.
48

4
1.

84
4

0.
28

9
0.

33
6

13
.5

81
13

.6
36

21
.0

45
87

.4
06

6.
25

0
8.

95
3

61
,7

11
61

,7
15

ds
j1

00
0

0.
15

7
0.

07
0

2.
18

7
0.

92
2

4.
64

0
2.

89
8

2.
93

7
36

.8
75

36
.8

37
35

.8
86

51
2.

09
4

15
.7

50
31

.9
38

7,
80

7,
74

0
7,

80
7,

74
7

A
ve

ra
ge

:
0.

17
3

0.
07

4
0.

64
9

0.
40

8
1.

41
7

1.
33

6
1.

40
8

12
.2

85
12

.2
84

9.
75

4
10

6.
30

8
13

.5
22

17
.0

63
1,

18
2,

65
9

1,
18

2,
66

2

O
ve

rl
ap

ra
ti

o:
0.

3
kr

oD
10

0
0.

07
9

0.
03

9
0.

07
8

0.
07

8
0.

14
1

0.
18

4
0.

23
1

1.
61

1
1.

69
3

1.
24

6
0.

62
5

0.
39

1
0.

50
0

86
5

86
5

ra
t1

95
0.

07
8

0.
04

7
0.

12
5

0.
15

6
0.

34
4

0.
23

4
0.

29
7

3.
23

3
3.

35
8

3.
24

1
25

.1
87

1.
01

6
1.

25
0

6,
32

2
6,

32
3

lin
31

8
0.

07
0

0.
03

9
0.

31
2

0.
26

5
0.

62
5

35
.6

52
35

.7
22

6.
25

5
6.

32
6

9.
65

9
8.

10
9

1.
93

7
3.

70
3

40
,1

64
40

,1
66

rd
40

0
0.

07
8

0.
04

0
0.

40
6

0.
37

5
1.

00
0

2.
80

7
2.

87
7

7.
86

0
7.

78
2

14
.0

15
60

.5
16

4.
25

0
5.

54
7

61
,1

16
61

,1
20

p
cb

44
2

0.
07

8
0.

05
5

0.
42

2
0.

32
9

0.
75

0
0.

63
0

0.
66

1
9.

65
0

9.
73

6
24

.8
81

52
.0

93
1.

70
4

3.
23

4
76

,1
33

76
,1

37
d4

93
0.

08
6

0.
04

7
0.

84
3

0.
37

5
0.

68
7

0.
74

3
0.

82
1

12
.0

86
12

.1
54

43
.7

93
12

6.
48

5
0.

62
5

1.
25

0
59

,1
05

59
,1

09
ds

j1
00

0
0.

18
8

0.
03

2
2.

26
5

1.
06

3
2.

76
6

10
.9

90
11

.0
36

20
.1

77
20

.2
31

31
3.

02
2

51
2.

03
2

3.
79

7
12

.2
65

2,
62

3,
49

2
2,

62
3,

49
8

A
ve

ra
ge

:
0.

09
4

0.
04

2
0.

63
6

0.
37

7
0.

90
2

7.
32

0
7.

37
8

8.
69

6
8.

75
4

58
.5

51
11

2.
15

0
1.

96
0

3.
96

4
40

9,
60

0
40

9,
60

3
O

ve
ra

ll
0.

34
4

0.
35

8
0.

66
1

0.
74

5
1.

57
9

3.
29

5
6.

96
0

13
.1

82
17

.6
47

23
.2

00
10

8.
16

4
1,

15
5.

17
1

1,
37

9.
54

5
1,

16
6,

30
7

1,
16

6,
31

0
av

er
ag

e:

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 179

methods (SZ1, SZ2, HYBRID1, HYBRID2), GTSP1, GTSP2, and the two methods from
Dong et al. [4] (HULL, MERGE). (2) For low and medium overlap, the methods that
use Steiner zones clearly outperform the methods that do not (LK-SOCP and YUAN+).
This suggests that for these problems, Steiner zones improve the quality of the solution.
(3) The two methods based on the generalized TSP (GTSP1, GTSP2) produce very good,
short tour lengths for low and medium overlap problems and poor tour lengths for high
overlap problems. The computation times are very long. (4) The hybrid methods (HYBRID1,
HYBRID2) produce results that fall between the Steiner zone methods and the GTSP
methods. For low overlap problems, the hybrid methods find much better tours than the
Steiner zone methods but not for the medium and high overlap problems. They are much
slower than the Steiner zone methods and much faster than the GTSP methods. (5) The
two methods that do not use Steiner zones (YUAN+ and LK-SOCP) perform better on
most high overlap ratio problems than all Steiner-zone methods. Because LK-SOCP is so
fast, it may be worthwhile to incorporate LK-SOCP into SZH as a hybrid heuristic. (6) If
we consider the order in which each heuristic appears in Tables 2 and 3 to be performance
rankings, then SZ1 and SZ2 have the best mean ranking, 4, of all 15 heuristics tested.
LK-SOCP is next with an average rank of 5. All other methods, including those from the
literature, have average rank greater than 6.
In separate experiments, we have shown that each phase of our Steiner-zone heuristic is

vital to the overall accuracy of the heuristic. Due to space limitations, we do not present
these results here.

6. Conclusions
This paper has presented a new, straightforward heuristic for the solving the CETSP. The
Steiner-zone heuristic reduces a graph of nodes to a set of Steiner zones, assigns a good
tour sequence to them, and then minimizes the tour’s length with respect to the Steiner
zones. We compared 15 different heuristics, including seven from the literature, for solving
the CETSP on 21 test problems. We found that the combination of low computation time
and high solution quality made the Steiner-zone heuristics very competitive methods.
Our future work will apply our heuristics to problems with an arbitrary radius for each

node. We will also solve problems with 3D Euclidean and 3D Manhattan norms.

Acknowledgment
We thank Scott Nestler, Kiran Panchamgam, Matthew Reindorp, Yufeng Tu, Wenli Wang,
and the anonymous referees for their comments and suggestions which have greatly improved
our paper. We thank Damon Gulzcynski and Jing Dong for providing codes used in our
experiments.

Appendix

A. The IPPhIII Heuristic
IPPhIII solves a succession of shortest path problems on 3-point approximations of the Steiner zones
produced in Phase I using the fixed sequence of Steiner zones produced in Phase II. As long as
the Steiner zones are sufficiently disjoint, the algorithm converges to a near-optimal solution of the
Touring Steiner Zones Problem (TSZP). Though Phase I does not guarantee disjoint Steiner zones,
we have not observed a single case in which the produced Steiner zones had too much overlap to
affect the convergence of IPPhIII. In Figures A.1 through A.9 we illustrate eight iterations of IPPhIII

for a 3-node problem. For simplicity of illustration, all nodes are singleton Steiner zones.

Mennell, Golden, and Wasil: Close-Enough TSP
180 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure A.1. Layout and first iteration of IPPhIII (initialization).
(a) A small problem before the

 first iteration of IPPhIII

(b) Approximate each Steiner
 zone at 0º, 120º, an 240º

(c) Solution to iteration 1

1

2

3

1

2

120º

120º

120º

240º

240º

240º

0º

0º

0º

3

120º
0º1

2

3

240º

Figure A.2. Second iteration of IPPhIII (initialization).
(a) Approximate each Steiner zone
 at 60º, 240º, and 300º

(b) Solution to iteration 2 (c) Solutions for the first two
 iterations of IPPhIII

1

2

Ite
ratio

n 2

Ite
ratio

n 1 3

2

1180º

180º

180º
300º

300º
60º

60º

3

60º

300º

1

2

3
300º

300º

180º

Note. Combining the first two solutions illustrates the bounded regions in which the optimal representative
points are likely to lie.

Figure A.3. Iteration 3.

1

2

3

0º
330º

240º

120º
150º

180º

270º
300º

300º

(a) Possible solution points for iteration 3 (b) Solution to iteration 3

330º
150º

1

2

3

270º

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 181

Figure A.4. Iteration 4.
(a) Possible solution points for iteration 4 (b) Solution to iteration 4

1

2

270º

330º 150º
165º
180º

315º
300º

285º
300º

3

1

2

3

270º

330º
165º

Figure A.5. Iteration 5.

1

3

2

240º

0º
345º

330º 150º
165º
180º

255º 270º

330º 165º

255º

1

3

2

(a) Possible solution points for iteration 5 (b) Solution to iteration 5

Figure A.6. Iteration 6.

1

3

2

255º
262.5º

345º
150º
165º
180º

330º
315º

270º
255º

330º
165º

1

3

2

(a) Possible solution points for iteration 6 (b) Solution to iteration 6

Mennell, Golden, and Wasil: Close-Enough TSP
182 12th INFORMS Computing Society Conference, c© 2011 INFORMS

Figure A.7. Iteration 7.

1

2

3

247.5º

337.5º
157.5º
165º

172.5º

330º
322.5º

255º 262.5º

330º
165º

255º

1

2

3

(a) Possible solution points for iteration 7 (b) Solution to iteration 7

Figure A.8. Iteration 8.

1

3

2

251.25º

333.75º
161.25º

165º
168.75º

330º
326.25º

255º 258.75º

258.75º

326.25º
165º

1

2

3

(a) Possible solution points for iteration 8 (b) Solution to iteration 8

Figure A.9. The final result (iteration 30).

1

2

3

257.871º

165.078º328.203º

Mennell, Golden, and Wasil: Close-Enough TSP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 183

References
[1] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. The Traveling Salesman Problem: A Com-

putational Study. Princeton University Press, Princeton, NJ, 2006.
[2] E. Arkin and R. Hassin. Approximation algorithms for the geometric covering salesman prob-

lem. Discrete Applied Mathematics 55:197–218, 1994.
[3] Concorde TSP Solver. http://www.tsp.gatech.edu/concorde/index.html.
[4] J. Dong, N. Yang, and M. Chen. Heuristic approaches for a TSP variant: The automatic

meter reading shortest tour problem. E. Baker, A. Joseph, A. Mehrotra, and M. Trick, eds.
Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies.
Springer, New York, 145–163, 2007.

[5] M. Dror, A. Lubiw, A. Efrat, and J. Mitchell. Touring a sequence of polygons. Proceedings of
the 35th Annual ACM Symposium on Theory of Computing, ACM Press, New York, 473–482,
2003.

[6] A. Dumitrescu and J. Mitchell. Approximation algorithms for TSP with neighborhoods in the
plane. Journal of Algorithms 45:135–159, 2003.

[7] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics 17:449–467, 1965.
[8] K. Elbassioni, A. Fishkin, and R. Sitters. On approximating the TSP with intersecting neigh-

borhoods. Proceedings of the 17th International Symposium on Algorithms and Computation,
New York, 213–222, 2006.

[9] M. Fischetti, J. Gonzalez, and P. Toth. A branch-and-cut algorithm for the symmetric gener-
alized traveling salesman problem. Operations Research 45:378–394, 1997.

[10] M. Gendreau, G. Laporte, and F. Semet. The covering tour problem. Operations Research
45:568–576, 1997.

[11] D. Gulczynski, J. Heath, and C. Price. Close enough traveling salesman problem: A discussion
of several heuristics. F. Alt, M. Fu, and B. Golden, eds. Perspectives in Operations Research:
Papers in Honor of Saul Gass’ 80th Birthday (Operations Research/Computer Science Inter-
faces Series). Springer, New York, 271–283, 2006.

[12] M. Held and R. Karp. The traveling salesman problem and minimum spanning trees. Opera-
tions Research 18:1138–1162, 1970.

[13] S. Lin and B. Kernighan. An effective heuristic algorithm for the travelling salesman problem.
Operations Research 21:2245–2269, 1973.

[14] W. Mennell. Heuristics for solving three routing problems: Close-enough traveling salesman
problem, close-enough vehicle routing problem, sequence-dependent team orienteering problem.
Ph.D. thesis, University of Maryland, College Park, 2009.

[15] J. Mitchell. A PTAS for TSP with neighborhoods among fat regions in the plane. Proceedings
of the 18th Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA,
11–18, 2007.

[16] K. Mulmuley. A fast planar partition algorithm, part I. Journal of Symbolic Computation
10:253–280, 1990.

[17] Reinelt, G. TSPLIB. Ruprecht Karls Universität Heidelberg, http://www.iwr.uni-heidelberg
.de/groups/comopt/software/TSPLIB95, 2006.

[18] R. Shuttleworth, B. Golden, S. Smith, and E. Wasil. Advances in meter reading: Heuristic
solution of the close enough traveling salesman problem over a street network. B. Golden,
S. Raghavan, and E. Wasil, eds. The Vehicle Routing Problem: Latest Advances and New
Challenges, Vol. 43. Springer, New York, 487–501, 2008.

[19] J. Silberholz and B. Golden. The generalized traveling salesman problem: A new genetic algo-
rithm approach. E. Baker, A. Joseph, A. Mehrotra, and M. Trick, eds. Extending the Hori-
zons: Advances in Computing, Optimization, and Decision Technologies. Springer, New York,
165–181, 2007.

[20] B. Yuan, M. Orlowska, and S. Sadiz. On the optimal robot routing problem in wireless sensor
networks. IEEE Transactions on Knowledge and Data Engineering 19:1251–1261, 2007.

