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Abstract Using constraint programming (CP), we address the task mapping problem in data-
driven macroprogramming for wireless sensor networks (WSNs). A task graph repre-
senting the flow of data among tasks assists the application developer in specifying
the features of a WSN at a high level of abstraction. A problem that arises in this
context is how to map the tasks to nodes in the target network before the deploy-
ment of sensors, in order to achieve an energy-efficient WSN. This problem is slightly
different from the deployment problem for distributed systems. We take a published
formulation of the WSN task mapping problem solved by integer programming (IP)
solvers, and rewrite it much more naturally as a constraint program, using off-the-shelf
CP components. On realistic instances of real-world applications of the problem, we
show that our CP model results in significantly better runtimes than the IP model.

Keywords constraint programming; wireless sensor networks; task mapping; macroprogramming;
integer programming

1. Introduction
Wireless sensor networks (WSNs) operate as distributed systems where sensors cooperatively
monitor or control conditions in an environment, such as temperature, speed, or pressure
(Akyıldız et al. [1]). A node in a WSN consists of at least a sensor, processor, radio trans-
mitter, and a battery. It is of great concern to reduce the energy consumption at each node
before deploying the network to the environment. The lifetime of a WSN depends critically
on the energy consumption of the nodes, especially in cases where the battery cannot be
charged once it is drained (Ergen and Varaiya [4]).
In a WSN, a node is assigned to perform tasks. Tasks are pieces of code implementing

applications of the network. The entire network repeats the same behaviour over a time
period called a round. Nodes have an initial energy level, which drops as they communicate
and process the assigned tasks in each round of the network (Mainwaring et al. [9]).
Tasks are grouped into three categories: sensing tasks, operative tasks, and actuator tasks.

A sensing task calls a sensor to collect data. For example, invoking a sensor to measure
temperature in a room is performed by a sensing task. An operative task performs operations
on data that has been gathered by the sensing tasks. For example, taking the temperature
from differently positioned sensors in a room and computing the average is performed by
an operative task. Finally, an actuator task performs an action to affect the environment,
which is based on data processed by operative tasks. For example, consider a task that turns
on a heater to warm a room. Sensing tasks and actuator tasks can only run on nodes with
the appropriate sensors or actuators, while operative tasks are free to run on any node with
sufficient computational resources.
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Programming a task for each sensor individually is a very time consuming process. Here we
use a methodology that allows defining and deploying tasks regardless of WSN architecture.
In the WSN context, data-driven macroprogramming refers to an approach that facilitates
sensor network programming by specifying the features of a WSN as a task graph (Bakshi
et al. [2], Gummadi et al. [6]). Using this method, a task graph is created based on data
flow that is independent of the network topology.
Data-driven macroprogramming poses many challenges such as how to map the task graph

efficiently onto the nodes in a WSN. A task mapping can be made more efficient by reducing
the energy consumption. Note that task mapping is not only initiated at the deployment
of the macroprogram, but also at any time during the operation of the WSN if the energy
level of a node drops under a certain level.
In this paper, we optimise the task mapping process in a multihop (Akyıldız et al. [1])

heterogeneous (Kumar et al. [8]) WSN to achieve overall minimum energy consumption by
the sensors. A multihop WSN allows several nodes to be on the path between two nodes, so
nodes have to consider routing information. A heterogeneous WSN is a network that is able
to provide several wireless services simultaneously.
A data driven task graph is represented as a directed acyclic graph, which is used as input

to the task mapping process. During task mapping, we consider task computation costs;
data firing rates and sizes; node routing costs; and placement constraints. The task graph
and the general modelling framework are the same as those in Bakshi et al. [2], Pathak and
Prasanna [15]. We take their framework and instance data related to two realistic instances
of real-world applications of the problem: the monitoring of heating, ventilation, and air
conditioning (Demirbaş [3]) and highway traffic management (Hsieh [7]).
We contribute to the WSN task mapping problem (which differs from the deployment

problem for distributed systems) by implementing our model as a constraint program and
showing that it achieves at least an order of magnitude speedup compared to the integer
programming (IP) model of Pathak and Prasanna [15] for realistic instances of real-world
applications.
The rest of this paper is organised as follows. In §2, we introduce the task mapping problem

in more detail, as well as the two real-world applications of the problem. In §3, we explain a
mathematical model of the task mapping problem. We summarise the IP implementation of
this model and introduce our CP implementation thereof, using a standard distinguishing
feature of CP, namely the ability of indexing a matrix by decision variables, thereby referring
to an unknown element of the matrix, using the element constraint (Van Hentenryck and
Carillon [17]). In §4, we report on the experiments we made on several realistic instances for
the two applications of the problem. Finally, in §5, we conclude, discuss related work, and
outline future work.

2. The Problem and Some Applications
In a task mapping problem, we need to consider the cost of routing a message between
any two nodes via any particular node, which means that on a WSN with n nodes we will
have a cost routing table of size n3. The combinatorial problem is to map optimally the
tasks with regard to such a three-dimensional cost routing matrix, considering the cost of
sensing, operative, and actuator tasks. A current method for optimal task mapping involves
modelling and solving it with an IP solver (Pathak and Prasanna [15]), which shows poor
performance on large-size instances of the problem (up to 192 nodes and 216 tasks).
We investigate two real-world applications. In both examples, we are given a data-driven

task graph and a set of nodes. The data-driven task graph is then preprocessed by the Srijan
macroprogramming toolkit (Pathak and Prasanna [15]) to provide a set of constraints for
each node, where tasks can be run and what are the possible data flows. The goal is then
to find a mapping that satisfies these constraints and minimises the energy consumption of
the network.
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Figure 1. Node placement in the highway traffic management system.
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The first application is a highway traffic management system where the aim is to reduce
the congestion of vehicles on a highway by controlling speed limits and vehicle access to
the highway. Figure 1 represents one sector of a highway. There are uniformly distributed
forwarding nodes on the edge of the highway to let the sectors communicate. Speed sensors
are randomly distributed on the four lanes so that each is in the range of at least another
speed sensor or a forwarding node. The speed sensor on each lane senses the speed of
passing vehicles, a presence sensor indicates the presence of a vehicle on the ramp, and
a red/green signal on the ramp controls vehicle entry to the highway. Figure 2 depicts a
specification of the data-driven task graph for one sector of a highway. Vertices in this graph
represent tasks and arcs indicate flow of data between the tasks. The operative tasks are
highlighted by grey colour and are free to map to any nodes. The tasks SpeedSampler
and RampSampler use a sensor to capture the speed or presence of a vehicle, respectively.
The sensing tasks send the sensed data to the operative tasks. There are four operative
tasks: the AvgQueueLengthCalculator takes the presence data from RampSampler tasks
at three consecutive sectors, and computes the average number of vehicles waiting in a
queue per round. The AvgSpeedCalculator takes the speed of vehicles from SpeedSampler
tasks at three consecutive sectors, and computes the average speed of vehicles on each lane.
The RampSignalCalculator takes the average queue length and average speed of vehicles
from three consecutive sectors and decides whether it is necessary to use the ramp signal
or not. The SpeedLimitCalculator takes the average queue length and average speed of
vehicles from three consecutive sectors and calculates the speed limit, which is sent to the
SpeedLimitDisplayer to show on the display. The RampSignalDisplayer takes the data
from the RampSignalCalculator and turns on the red or green signal accordingly. We
experiment on realistic instances of this problem ranging from 7 nodes and 9 tasks up to
150 nodes and 216 tasks.
The second application is building environment management for the monitoring of heating,

ventilation, and air conditioning (HVAC). The sensing tasks are humidity sampling and
temperature sampling, which are fixed to some nodes, and the actuator tasks are fixed to
selected nodes to control humidity and temperature. The operative tasks collect the sampled
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Figure 2. Specification of data-driven task graph for one sector of a highway in the traffic problem.
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data from sensors, compute averages, and respond with proper actions for the actuator tasks.
We experiment on realistic instances of this problem ranging from 7 nodes and 6 tasks up
to 192 nodes and 144 tasks.
The operative tasks defined for the two applications are free to be mapped to any nodes.

We minimise the energy consumed by each node, based on the communication cost for
gathering the collected data from all the other nodes, processing the operations, and sending
the results to the actuators. Note that, once tasks are mapped to nodes, we can compute
the energy spent by each node in one round.

3. Model
After presenting the mathematical model of Pathak and Prasanna [15] for the task map-
ping problem,1 we compare the integer programming (IP) implementation in Pathak and
Prasanna [15] of this model with our much smaller and more direct constraint programming
(CP) implementation thereof. We achieve this by exploiting a standard distinguishing fea-
ture of CP, namely the ability of indexing a matrix by decision variables, thereby referring
to an unknown element of the matrix, using the element constraint (Van Hentenryck and
Carillon [17]).

3.1. Mathematical Model
Throughout this paper, the indices t, t′, and t′′ refer to tasks, while the indices n, n′, and n′′

refer to nodes. The constants are as follows:
• Let N be the set of WSN nodes.
• Let T be the set of tasks.
• Let A be the set of arcs in the task graph G = (T,A), with arc (t, t′) indicating that

task t is sending data to task t′.
• Let f [t] be the firing rate of task t, that is the number of times t is fired at each round.
• Let s[t, t′] be the number of units of data sent from task t to task t′.
• Let e[n,n′, n′′] be the energy consumed by node n while routing one unit of data that is

sent from node n′ to node n′′.
• Let e0[n] be the initial energy of node n.

The decision variables are as follows:
• Let node[ t] denote the node that task t is mapped to, with t ∈ T and node[ t]∈ N .
• Let energy[n] denote the energy spent by node n according to the tasks mapped to it

by the node[ t] decision variables, with n ∈ N and energy[n]∈ N.

1 Actually, we present its simplification to the scenario used in its experiments, namely under the assumption
that computation energy is negligible compared to communication energy.
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We now introduce the constraints and the objective function.
As explained in §2, a sensing or actuator task may be restricted to a suitable subset of the

nodes, and therefore it cannot be mapped to any other node. Such placement constraints
are modelled as follows:

node[ t] �= n for every task t that cannot be mapped to node n. (1)

The energy energy[n] spent by node n in one round is the sum of its energies consumed for
routing data between every pair of nodes that are communicating via n:

energy[n] =
∑

(t′, t′′)∈A

f [t′] · s[t′, t′′] · e[n,node[ t′],node[ t′′]] (∀n ∈ N). (2)

Note that the indices node[ t′] and node[ t′′] on the e matrix in (2) are decision variables.
The objective is to minimise the maximum energy spent by the nodes in one round.

Indeed, in task mapping for WSNs, we aim at maximising the time-to-reconfiguration, which
is the time when the energy level of some node goes below some fraction of its initial energy.
Thus, the objective function to be minimised is the following:

max
∀n∈N

1
e0[n]

· energy[n].

To perform this minimisation, we introduce an integer decision variable c ∈ N and constrain
the fraction of initial energy spent in each round by node n to be at most c, subject to
minimising c:

1
e0[n]

· energy[n]≤ c (∀n ∈ N). (3)

Since all initial energies are the same in our data sets, we simplify this to:

energy[n]≤ c (∀n ∈ N). (4)

3.2. The IP Implementation
Due to the node[ t′] and node[ t′′] decision variables among the indices on the e matrix in
the energy constraints (2), the latter have to be reformulated when using an IP solver. We
first replace the array node[ ] of |T | decision variables of the mathematical model by a two-
dimensional matrix x of |T | · |N | Boolean (0/1) decision variables, such that x[t, n] = 1 if
and only if task t is mapped to node n (that is, if and only if node[ t] = n), with t ∈ T and
n ∈ N , under the additional constraints that every task t is mapped to exactly one node n:

∑

n∈N

x[t, n] = 1 (∀ t ∈ T ).

The placement constraints (1) then become as follows:

x[t, n] = 0 for every task t that cannot be mapped to node n.

The energy constraints (2) can then consider all possible nodes n′ and n′′ and multiply
e[n,n′, n′′] by x[t′, n′] ·x[t′′, n′′] to indicate whether there is a message routed from n′ to n′′

via node n:

energy[n] =
∑

(t′,t′′)∈A

∑

n′∈N

∑

n′′∈N

f [t′] · s[t′, t′′] · e[n,n′, n′′] ·x[t′, n′] ·x[t′′, n′′] (∀n ∈ N).

However, the factor x[t′, n′] · x[t′′, n′′] makes this a nonlinear constraint. To linearise it,
following (Nemhauser et al. [14]) as in Pathak and Prasanna [15], we add a four-dimensional
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matrix y of |T |2 · |N |2 redundant Boolean (0/1) decision variables, such that the following
channelling constraints enforce that y[t′, n′, t′′, n′′] = x[t′, n′] ·x[t′′, n′′]:

y[t′, n′, t′′, n′′]≤ x[t′, n′]

y[t′, n′, t′′, n′′]≤ x[t′′, n′′]

y[t′, n′, t′′, n′′]≥ x[t′, n′] +x[t′′, n′′]− 1

(∀ t′, t′′ ∈ T, ∀n′, n′′ ∈ N).

The energy constraints (2) now become as follows:

energy[n] =
∑

(t′, t′′)∈A

∑

n′∈N

∑

n′′∈N

f [t′] · s[t′, t′′] · e[n,n′, n′′] · y[t′, n′, t′′, n′′] (∀n ∈ N).

The objective remains the minimisation of c, subject to (4).
In summary, we have replaced |T | integer decision variables by |T |2 · |N |2 + |T | · |N |

Boolean decision variables and added 3 · |T |2 · |N |2 + |T | constraints to the mathematical
model. This is not negligible, as WSNs may have hundreds of nodes and hundreds of tasks.
Further, the single summation (2) has become a triply nested summation. A better IP
formulation might be possible, but finding one is beyond the scope of this paper.

3.3. The CP Implementation
A CP model can much more directly implement the mathematical model, due to its unique
ability of indexing arrays and matrices by decision variables. The element(A, i, v) constraint
(Van Hentenryck and Carillon [17]) holds if and only if A[i] = v, where A is an array of
constants or decision variables, i is a linear expression on integer decision variables, and v is
a constant or decision variable.
Let en designate the array obtained by flattening row-wise the two-dimensional matrix

slice e[n,∗,∗] of the three-dimensional matrix e, that is the following relationship (not con-
straint) holds:

en[(n′ − 1) · |N |+n′′] = e[n,n′, n′′] (∀n,n′, n′′ ∈ N). (5)

Let f be a function that maps the arcs A of the task graph to the integers 1,2, . . . , |A|. We
first add a two-dimensional matrix z of |A| · |N | redundant integer decision variables to the
mathematical model, such that z[f(t′, t′′), n] is equal to e[n,node[ t′],node[ t′′]]. Due to the
relationship (5), this requirement can be enforced by the channelling constraints

element(en, (node[ t′]− 1) · |N |+node[ t′′], z[f(t′, t′′), n]) (∀n ∈ N, ∀ (t′, t′′)∈ A)

on which domain consistency (all values not participating in a solution are pruned) can be
achieved efficiently. The energy constraints (2) now become as follows:

energy[n] =
∑

(t′, t′′)∈A

f [t′] · s[t′, t′′] · z[f(t′, t′′), n] (∀n ∈ N).

The objective remains the minimisation of c, subject to (4).
In summary, we have added |A| · |N | integer decision variables and |A| · |N | constraints to

the mathematical model. Since |A|=O(|T |2), we have added O(|T |2 · |N |) integer decision
variables and O(|T |2 · |N |) constraints, hence at least |N | times fewer additional decision
variables and constraints than in the IP model. Further, note that the energy constraints of
the CP model have a single summation, like (2) in the mathematical model, and unlike the
triply nested summation in the IP model.
With the Comet (Van Hentenryck and Michel [18]) CP solver,2 one can literally write the

energy constraints as in (2), though another domain-consistent implementation of such a
multidimensional element constraint is made.

2 Available from http://dynadec.com/.
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Another distinguishing feature of CP is the ability to define a custom search procedure
for the model at hand, rather than having to rely on a fixed search procedure like IP solvers.
In CP, complete tree search is interleaved with propagation (the usually polynomial-time
elimination of provably impossible values from the domains of the decision variables) at
every node. Search is parameterised by heuristics that specify what decision variable, value,
and comparison operator is selected for branching decisions. Search usually does not branch
over all decision variables, as some decision variables will eventually take their values just
through propagation of the channelling constraints when branching on decisions involving
the other decision variables.
Our search procedure branches on the node[ t] decision variables only. It selects a most

constrained decision variable node[ t] (that is variable ordering INT VAR DEGREE MAX in
Gecode (Gecode Team [5])), and for tie-breaking, it selects the left-most decision vari-
able with the currently smallest domain (INT VAR SIZE MIN in Gecode). For branching
on the selected decision variable node[ t], we consider the following situation (known as
INT VAL RANGE MAX in Gecode):
(1) If the domain of the selected decision variable has a single range l . . . u, then we try

the decision node[ t] > �(l+u)/2
 on the left branch and the decision node[ t] ≤ �(l+u)/2

on the right branch.
(2) Otherwise, we try the left-most largest range on the left branch and the rest of the

domain on the right branch.

4. Experiments
We experimented with various realistic instances (chosen from Pathak and Prasanna [15],
plus larger ones produced by the instance generator used in Pathak and Prasanna [15]) for
the two applications mentioned in §2, namely the highway traffic management and HVAC
problems. For each of the two applications, we start from the smallest size (highway traffic
〈|N |, |T |〉 = 〈7,9〉 and HVAC 〈7,6〉) and increase the instance size by at least 10 nodes at
each step up to the largest size (highway traffic 〈150,216〉 and HVAC 〈192,144〉).
Our CP model is implemented in Gecode (Gecode Team [5]) (revision 3.4.0)3 and runs

under Mac OS X 10.6.4 64 bit on an Intel Core 2 Duo 2.53 GHz with 3 MB L2 cache and
4 GB RAM. We set a timeout of 600 second for each instance, recording the time at two
points: the time to solve optimally the instance and the time at which the minimum cost
has been reached.
We also solved our instances using the IP solvers Gurobi (revision 3.0.1),4 SCIP (revi-

sion 1.2.0),5 and lp solve (revision 5.5),6 under their default parameters, the same system
configuration, and the same experimental set-up. We chose lp solve only since it is the solver
used in Pathak and Prasanna [15]. We chose to experiment also with Gurobi and SCIP, as
these two solvers are among the fastest commercial and noncommercial IP solvers, respec-
tively (according to the SCIP home page).
The instance data are stored both in an internal format used by our CP model and in

the MPS file format (Nazareth [13]). MPS is a standard column-oriented format for storing
linear programming models for IP solvers.
In Tables 1 and 2, we present the results of solving highway traffic management and

HVAC instances using our CP model compared to the model solved by the three IP solvers.
For highway traffic management, Gecode always proves the optimum solution faster than
Gurobi, and specifically, for larger instances, Gecode proves the optimum solution at least

3 Available from http://www.gecode.org/.
4 Available from http://gurobi.com/.
5 Available from http://scip.zib.de/.
6 Available from http://lpsolve.sourceforge.net/.
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Table 1. Results of different solvers for realistic instances of the highway traffic management task
mapping problem.

Gecode Gurobi SCIP lp solve
Highway
〈|N |, |T |〉 Time Timeopt Cost Time Timeopt Cost Time Timeopt Cost Time Timeopt Cost

〈7,9〉 0.001 0.010 20 <1 0.03 20 7.56 7.56 20 <1 0.24 20
〈13,18〉 0.009 0.024 60 <1 0.42 60 70.5 70.83 60 1 27.14 60
〈19,27〉 0.022 0.034 100 <1 8.12 100 58.7 >600.00 100 3 >600.00 100
〈25,36〉 0.049 0.060 100 <1 10.81 100 168 >600.00 100 10 >600.00 100
〈32,45〉 0.091 0.109 100 <1 7.48 100 146 >600.00 100 240 >600.00 100
〈38,54〉 0.166 0.222 100 <1 11.07 100 106 >600.00 172 13 >600.00 150
〈44,63〉 0.264 0.300 100 <1 45.50 100 167 >600.00 148 21 >600.00 180
〈63,90〉 0.985 1.048 100 98 153.97 100 450 >600.00 120 68 >600.00 230
〈74,36〉 0.549 >600.000 300 38 >600.00 300 165 >600.00 480 >600 >600.00 —
〈75,108〉 1.888 2.007 100 142 428.90 100 459 >600.00 179 270 >600.00 210
〈88,126〉 3.350 3.499 100 1 117.80 100 536 >600.00 177 >600 >600.00 —
〈100,144〉 5.359 5.693 100 2 119.09 100 335 >600.00 189 >600 >600.00 —
〈113,162〉 8.427 8.756 100 2 96.73 100 392 >600.00 207 >600 >600.00 —
〈124,60〉 3.155 286.338 300 165 >600.00 300 >600 >600.00 — >600 >600.00 —
〈125,180〉 12.545 12.956 100 3 329.46 100 301 >600.00 209 >600 >600.00 —
〈138,198〉 17.598 18.282 100 421 546.33 100 31.5 >600.00 240 >600 >600.00 —
〈150,216〉 24.205 25.033 100 3 >600.00 100 >600 >600.00 — >600 >600.00 —

Notes. The time unit is seconds, in the precision reported by the respective solver. A 600-second-timeout
was used and time is recorded at two points: the time to solve optimally the instance, denoted by timeopt,
and the time to reach the minimum cost, denoted by “time.” The runtime was rounded by a solver to 0
for some instances: we report it to be “<1.” In some instances, the solver failed to reach any cost before
the timeout, which is shown by “—.” The boldface values indicate best times to prove optimality for the
corresponding instance.

an order of magnitude faster than Gurobi. For HVAC, in most of the instances Gecode is
competitive with Gurobi, which is remarkable as Gecode is a noncommercial solver.
These results show that constraint programming can efficiently solve a combinatorial

problem introduced in task mapping for WSNs. It is also worth mentioning that IP solvers
use a pre-solve phase to eliminate as many variables and constraints as possible before
solving the actual problem. For example, pre-solve in one of the hardest instances (highway
traffic 〈124,60〉) using Gurobi is taking 22 seconds, which are included in the runtime of
165 seconds in Table 1, and this is already longer than the time spent by Gecode to find the
same solution.

5. Conclusion
Macroprogramming for wireless sensor networks (WSNs) is an evolving area, where efficiency
of a WSN can benefit considerably by task mapping in a configuration phase, as well as in
reconfiguration when the energy level of a node drops below some amount.

5.1. Summary
We presented a constraint programming (CP) model for the task mapping problem in a
multihop heterogeneous WSN. Our model involves placement constraints and the cost of
routing. The optimisation is done by minimising the maximum energy spent by each node
in each round. We have shown that our CP model is at least competitive with a published
integer programming (IP) model, if not outperforming it by at least one order of magnitude.

5.2. Related Work
The main related work to ours is Pathak and Prasanna [15], where the problem specification
and formulation are taken from, and where the remaining related work is discussed; we took
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Table 2. Results of different solvers for realistic instances of the HVAC task mapping problem.

Gecode Gurobi SCIP lp solve
HVAC
〈|N |, |T |〉 Time Timeopt Cost Time Timeopt Cost Time Timeopt Cost Time Timeopt Cost

〈7,6〉 0.110 0.110 10 <1 <0.01 10 0.10 0.13 10 <1 <0.01 10
〈11,9〉 0.001 0.012 60 <1 <0.01 60 0.10 0.15 60 <1 0.02 60
〈23,8〉 0.003 0.013 480 <1 0.01 480 0.28 0.28 480 <1 0.34 480
〈34,26〉 0.011 0.032 1,080 <1 0.02 1,080 0.50 0.50 1,080 2 2.43 1,080
〈43,33〉 0.030 0.060 1,980 <1 0.03 1,980 0.50 0.55 1,980 3 8.56 1,980
〈54,41〉 0.065 0.106 3,080 <1 0.06 3,080 0.80 0.80 3,080 9 20.61 3,080
〈66,50〉 0.136 0.231 4,760 <1 0.11 4,760 1.19 1.19 4,760 14 41.01 4,760
〈74,56〉 0.208 0.361 6,080 <1 0.18 6,080 1.50 1.50 6,080 37 86.22 6,080
〈86,65〉 0.392 0.645 8,360 <1 0.37 8,360 2.10 2.16 8,360 55 137.03 8,360
〈97,73〉 0.573 1.027 10,500 <1 0.59 10,500 2.79 2.79 10,500 106 309.52 10,500
〈106,80〉 0.821 1.490 12,960 <1 0.81 12,960 3.31 3.31 12,960 247 >600.00 12,960
〈192,144〉 8.267 13.555 43,120 3 3.90 43,120 15.7 15.76 43,120 >600 >600.00 —

Notes. The time unit is seconds, in the precision reported by the respective solver. A 600-second-timeout
was used and time is recorded at two points: the time to solve optimally the instance, denoted by timeopt,
and the time to reach the minimum cost, denoted by “time.” The runtime was rounded by a solver to 0
for some instances: we report it to be “<1.” In some instances, the solver failed to reach any cost before
the timeout, which is shown by “—.” The boldface values indicate best times to prove optimality for the
corresponding instance.

the instances from that work to compare with IP solvers. However, we use CP to capture
directly the mathematical model.
In Tian et al. [16], the authors only investigate single-hop homogeneous WSNs. We con-

sider multihop heterogeneous networks including routing costs. That work, unlike ours, also
considers the minimum schedule length subject to energy consumption constraints.
To the best of our knowledge, there has been no work addressing a CP approach for

a general case of task mapping in a multihop WSN achieving energy optimisation under
routing costs.
The closest CP approach to our work is Michel et al. [10], where the problem is the

optimal deployment of eventually serialisable data services (ESDS) in distributed systems.
The ESDS problem includes separation constraints (every pair in a subset of modules must
not be mapped to the same server) and co-location constraints (every pair in a subset of
modules must be mapped to the same server), unlike our WSN task mapping problem. The
ESDS communication cost (the number of hops) is paid only by the end-points, whereas
our work considers the communication cost that any particular node pays for routing a
message between any two other nodes. Whereas in ESDS one minimises the sum of all hops
required to send messages between modules, we minimise the maximum energy spent by
any node. Even if we also minimised the total energy spent by all nodes, it would still be
necessary to have the initial-energy constraints (3), which do not occur in ESDS. They also
report impressive speed-ups over an IP model of their CP model in Comet, which also uses a
multidimensional element constraint, and the gap to the IP model is probably made bigger
by the allDifferent constraints capturing the extra separation constraints. They also show
that dynamic symmetry breaking can further improve the CP model. In Michel et al. [12],
they discuss how to incorporate bandwidth limitation constraints on the connections, which
is also a way of tracking the cost of routing information. Finally, the success of their CP
modelling work begun in Michel et al. [11] for the online selection of quorum configurations
for rapidly changing networking environments is due to similar features as in their ESDS
work and our present work.
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5.3. Future Work
We expect that a more advanced branching that takes the task graph and the target network
features into account may result in a faster solution or a better cost under the 600-second-
timeout.
In Pathak and Prasanna [15], two objectives are used: minimising the maximum energy

spent by all nodes, namely energy balance, and minimising the sum of the energy spent by
all nodes. Energy balance is a better metric, since it maximises the time to reconfiguration.
Minimising the total energy spent is the classical metric. We can also consider minimising
the total energy as our cost metric and investigate the effect of this classical metric.
The work in Pathak and Prasanna [15] also addresses a scenario where multiple paths

are possible between nodes, which further increases the complexity of the problem, and is
considered as our future work. The computation cost of tasks was ignored both in our CP
model and in the experiments with the IP model of Pathak and Prasanna [15], since the
computation cost for invoking a task by a node, in our data set, is far smaller than the
communication cost of routing the message. However, it might be of interest to investigate
the impact of computational cost on the model. It is also interesting to compare our CP
model to the greedy heuristic introduced in Pathak and Prasanna [15].
An alternate approach in solving a combinatorial problem such as task mapping is local

search. It may be more efficient to find a reasonably good solution according to the objective
function using local search, however it may not be possible to solve optimally the problem.
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[3] M. Demirbaş. Wireless sensor networks for monitoring of large public buildings. Technical
Report 2005-26, Department of Computer Science and Engineering, State University of New
York at Buffalo, Buffalo, 2005.

[4] S. C. Ergen and P. Varaiya. Energy efficient routing with delay guarantee for sensor networks.
Wireless Networks 13(5):679–690, 2007.

[5] Gecode Team. Gecode: Generic constraint development environment. Version 3.4.0. http://
www.gecode.org/, 2006. Accessed July 26, 2010.

[6] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor networks
using KAIROS. V. K. Prasanna, S. S. Iyengar, P. G. Spirakis, and M. Welsh, eds. Distributed
Computing in Sensor Systems (DCOSS), First IEEE International Conference, Vol. 3560.
Lecture Notes in Computer Science, Springer-Verlag, Berlin/Heidelberg, 126–140, 2005.

[7] T. T. Hsieh. Using sensor networks for highway and traffic applications. IEEE Potentials
23(2):13–16, 2004.

[8] D. Kumar, T. C. Aseri, and R. B. Patel. Energy efficient heterogeneous clustered scheme for
wireless sensor networks. Computer Communications 32(4):662–667, 2009.

[9] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor networks
for habitat monitoring. WSNA’02: Proceedings of the 1st ACM International Workshop on
Wireless Sensor Networks and Applications. ACM Press, New York, 88–97, 2002.



Hassani et al.: Task Mapping for Sensor Network Using CP
12th INFORMS Computing Society Conference, c© 2011 INFORMS 209

[10] L. Michel, A. A. Shvartsman, E. L. Sonderegger, and P. Van Hentenryck. Optimal deployment
of eventually-serializable data services. L. Perron and M. A. Trick, eds. Proceedings of the
5th International Conference on Integration of Artificial Intelligence and Operations Research
Techniques in Constraint Programming for Combinatorial Optimization Problems, Vol. 5015.
Lecture Notes in Computer Science, Springer-Verlag, Berlin/Heidelberg, 188–202, 2008.

[11] L. Michel, M. Moraal, A. A. Shvartsman, E. L. Sonderegger, and P. Van Hentenryck. Online
selection of quorum systems for RAMBO reconfiguration. I. P. Gent, ed. Proceedings of the 15th
International Conference on Principles and Practice of Constraint Programming, Vol. 5732.
Lecture Notes in Computer Science, Springer-Verlag, Berlin/Heidelberg, 88–103, 2009.

[12] L. Michel, P. Van Hentenryck, E. L. Sonderegger, A. A. Shvartsman, and M. Moraal.
Bandwidth-limited optimal deployment of eventually-serializable data services. W. J. van Hoeve
and J. N. Hooker, eds. Proceedings of the 6th International Conference on Integration of Artifi-
cial Intelligence and Operations Research Techniques in Constraint Programming for Combina-
torial Optimization Problems, Vol. 5547. Lecture Notes in Computer Science, Springer-Verlag,
Berlin/Heidelberg, 193–207, 2009.

[13] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, Oxford, UK,
1987.

[14] G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd. Optimization. Elsevier, North-
Holland, New York, 1989.

[15] A. Pathak and V. K. Prasanna. Energy-efficient task mapping for data-driven sensor network
macroprogramming. IEEE Transactions on Computers 59(7):955–968, 2010.
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