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Abstract
In the last 25 years (1990–2014), algorithmic advances in integer optimization
combined with hardware improvements have resulted in an astonishing 200
billion factor speedup in solving mixed integer optimization (MIO) problems.
We present a MIO approach for solving the classical best subset selection
problem of choosing k out of p features in linear regression given n observations.
We develop a discrete extension of modern first order continuous optimization
methods to find high quality feasible solutions that we use as warm starts to
a MIO solver that finds provably optimal solutions. The resulting algorithm
(a) provides a solution with a guarantee on its suboptimality even if we
terminate the algorithm early, (b) can accommodate side constraints on the
coefficients of the linear regression, and (c) extends to finding best subset
solutions for the least absolute deviation loss function. Using a wide variety of
synthetic and real datasets, we demonstrate that our approach solves problems
with n in the 1000s and p in the 100s in minutes to provable optimality, and
finds near optimal solutions for n in the 100s and p in the 1000s in minutes.
We also establish via numerical experiments that the MIO approach performs
better than Lasso in terms of achieving sparse solutions with good predictive
power.
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1 Introduction

We consider the linear regression model with response vector yn×1, model
matrix X = [x1, . . . ,xp] ∈ Rn×p, regression coefficients β ∈ Rp×1 and errors
ε ∈ Rn×1:

y = Xβ + ε.

In many important classical and modern statistical applications, it is desirable
to obtain a parsimonious fit to the data by finding the best k-feature fit to the
response y. We will also assume that the columns of X have been standardized
to have zero means and unit `2-norm. Especially in the high-dimensional
regime with p � n, in order to conduct statistically meaningful inference,
it is desirable to assume that the true regression coefficient β is sparse or
may be well approximated by a sparse vector. Quite naturally, the last few
decades have seen a flurry of activity in estimating sparse linear models with
good explanatory power. Central to this statistical task lies the best subset
Problem [35] with subset size k, which is given by the following optimization
problem:

min
β

1

2
‖y −Xβ‖22 subject to ‖β‖0 ≤ k, (1)

where the `0 (pseudo)norm of a vector β counts the number of nonzeros in
β and is given by ‖β‖0 =

∑p
i=1 1(βi 6= 0), where 1(·) denotes the indicator

function. The cardinality constraint makes Problem (1) NP-hard [36]. Indeed,
state-of-the-art algorithms to solve Problem (1), as implemented in popular
statistical packages, like leaps in R, do not scale to problem sizes larger than
p = 30. Due to this reason, it is not surprising that the best subset problem has
been widely dismissed as being intractable by the greater statistical community.

In this paper we address Problem (1) using modern optimization methods,
specifically mixed integer optimization (MIO) and a discrete extension of first
order continuous optimization methods. Using a wide variety of synthetic and
real datasets, we demonstrate that our approach solves problems with n in
the 1000s and p in the 100s in minutes to provable optimality, and finds near
optimal solutions for n in the 100s and p in the 1000s in minutes. To the best
of our knowledge, this is the first time that MIO has been demonstrated to
be a tractable solution method for Problem (1). We note that we use the
term tractability not to mean the usual polynomial solvability for problems,
but rather the ability to solve problems of realistic size in times that are
appropriate for the applications we consider.

As there is a vast literature on the best subset problem, we next give a brief
and selective overview of related approaches for the problem.

Brief Context and Background

To overcome the computational difficulties of the best subset problem, com-
putationally tractable convex optimization based methods like Lasso [44, 15]
have been proposed as a convex surrogate for Problem (1). For the linear
regression problem, the Lagrangian form of Lasso solves

min
β

1
2‖y −Xβ‖22 + λ‖β‖1, (2)
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where the `1 penalty on β, i.e., ‖β‖1 =
∑
i |βi| shrinks the coefficients towards

zero and naturally produces a sparse solution by setting many coefficients
to be exactly zero. There has been a substantial amount of impressive work
on Lasso [21, 13, 5, 49, 28, 53, 17, 31, 34, 47, 45] in terms of algorithms and
understanding of its theoretical properties—see for example the excellent books
or surveys [10, 30, 45] and the references therein.

Indeed, Lasso enjoys several attractive statistical properties and has drawn
a significant amount of attention from the statistics community as well as
other closely related fields. Under various conditions on the model matrix
X and n, p,β it can be shown that Lasso delivers a sparse model with good
predictive performance [10, 30]. In order to perform exact variable selection,
much stronger assumptions are required [10]. Sufficient conditions under
which Lasso gives a sparse model with good predictive performance are the
restricted eigenvalue conditions and compatibility conditions [10]. These
involve statements about the range of the spectrum of sub-matrices of X and
are difficult to verify, for a given data-matrix X.

An important reason behind the popularity of Lasso is its computational
feasibility and scalability to practical sized problems. Problem (2) is a convex
quadratic optimization problem and there are several efficient solvers for it,
see for example [39, 21, 25].

In spite of its favorable statistical properties, Lasso has several shortcomings.
In the presence of noise and correlated variables, in order to deliver a model with
good predictive accuracy, Lasso brings in a large number of nonzero coefficients
(all of which are shrunk towards zero) including noise variables. Lasso leads
to biased regression coefficient estimates, since the `1-norm penalizes both
large and small coefficients uniformly. In contrast, if the best subset selection
procedure decides to include a variable in the model, it brings it in without
any shrinkage thereby draining the effect of its correlated surrogates. Upon
increasing the degree of regularization, Lasso sets more coefficients to zero, but
in the process ends up leaving out true predictors from the active set. Thus, as
soon as certain sufficient regularity conditions on the data are violated, Lasso
becomes suboptimal as (a) a variable selector and (b) in terms of delivering a
model with good predictive performance.

The shortcomings of Lasso are also known in the statistical literature. In
fact, there is a significant gap between what can be achieved via best subset
selection and Lasso: this is supported by empirical (for small problem sizes,
i.e., p ≤ 30) and theoretical evidence, see for example, [41, 52, 33, 27, 50, 43]
and the references therein.

To address the shortcomings, non-convex penalized regression is often used
to “bridge” the gap between the convex `1 penalty and the combinatorial `0
penalty [33, 23, 22, 48, 49, 24, 54, 55, 51, 11]. Written in Lagrangian form,
this gives rise to continuous non-convex optimization problems of the form:

1
2‖y −Xβ‖22 +

∑
i

p(|βi|; γ;λ), (3)

where p(|β|; γ;λ) is a non-convex function in β with λ and γ denoting the
degree of regularization and non-convexity, respectively. Typical examples
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of non-convex penalties include the minimax concave penalty (MCP), the
smoothly clipped absolute deviation (SCAD), and `γ penalties (see for example,
[23, 33, 55, 22]). There is strong statistical evidence indicating the usefulness
of estimators obtained as minimizers of non-convex penalized problems (3)
over Lasso see for example [50, 32, 48].

Problem (3) mainly leads to a family of continuous and non-convex optimiza-
tion problems. Various effective nonlinear optimization based methods (see
for example [55, 22, 11, 32, 48, 33] and the references therein) have been
proposed in the literature to obtain good local minimizers to Problem (3). In
particular [33] proposes Sparsenet, a coordinate-descent procedure to trace
out a surface of local minimizers for Problem (3) for the MCP penalty using
effective warm start procedures. None of the existing approaches for solving
Problem (3), however, come with guarantees of how close the solutions are to
the global minimum of Problem (3).

The Lagrangian version of (1) given by

1
2‖y −Xβ‖22 + λ

p∑
i=1

1(βi 6= 0), (4)

may be seen as a special case of (3). Note that, due to non-convexity, prob-
lems (4) and (1) are not equivalent. Problem (1) allows one to control the
exact level of sparsity via the choice of k, unlike (4) where there is no clear
correspondence between λ and k. Problem (4) is a discrete optimization
problem unlike continuous optimization problems (3) arising from continuous
non-convex penalties.

Insightful statistical properties of Problem (4) have been explored from a
theoretical viewpoint in [50, 27, 28, 43]. [43] points out that (1) is preferable
over (4) in terms of superior statistical properties of the resulting estimator.
None of the aforementioned papers, however, discuss methods to obtain prov-
ably optimal solutions to problems (4) or (1), and to the best of our knowledge,
computing optimal solutions to problems (4) and (1) is deemed as intractable.

Our Approach In this paper, we propose a novel framework via which the
best subset selection problem can be solved to optimality or near optimality in
problems of practical interest within a reasonable time frame. At the core of
our proposal is a computationally tractable framework that brings to bear the
power of modern discrete optimization methods: discrete first order methods
motivated by first order methods in convex optimization [40] and mixed integer
optimization (MIO), see [4]. We do not guarantee polynomial time solution
times as these do not exist for the best subset problem unless P=NP. Rather,
our view of computational tractability is the ability of a method to solve
problems of practical interest in times that are appropriate for the application
addressed. An advantage of our approach is that it adapts to variants of the
best subset regression problem of the form:

min
β

1
2‖y −Xβ‖qq

s.t. ‖β‖0 ≤ k
Aβ ≤ b,
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where Aβ ≤ b represents polyhedral constraints and q ∈ {1, 2} refers to a
least absolute deviation or the least squares loss function on the residuals
r := y −Xβ.

Existing approaches in the Mathematical Optimization Literature
In a seminal paper [26], the authors describe a leaps and bounds procedure for
computing global solutions to Problem (1) (for the classical n > p case) which
can be achieved with computational effort significantly less than complete
enumeration. leaps, a state-of-the-art R package uses this principle to perform
best subset selection for problems with n > p and p ≤ 30. [3] proposed
a tailored branch-and-bound scheme that can be applied to Problem (1)
using ideas from [26] and techniques in quadratic optimization, extending and
enhancing the proposal of [6]. The proposal of [3] concentrates on obtaining
high quality upper bounds for Problem (1) and is less scalable than the methods
presented in this paper.

Contributions We summarize our contributions in this paper below:

1. We use MIO to find a provably optimal solution for the best subset
problem. Our approach has the appealing characteristic that if we
terminate the algorithm early, we obtain a solution with a guarantee on
its suboptimality. Furthermore, our framework can accommodate side
constraints on β and also extends to finding best subset solutions for the
least absolute deviation loss function.

2. We introduce a general framework of solution methods based on a discrete
extension of modern first order continuous optimization methods that
provide near-optimal solutions for the best subset problem. The MIO
algorithm significantly benefits from solutions obtained by the first order
methods and problem specific information that can be computed in a
data-driven fashion.

3. We report computational results with both synthetic and real-world
datasets that show that our proposed framework can deliver provably
optimal solutions for problems of size n in the 1000s and p in the
100s in minutes. For high-dimensional problems with n ∈ {50, 100}
and p ∈ {1000, 2000}, with the aid of warm starts and further problem-
specific information, our approach finds near optimal solutions in minutes
but takes hours to prove optimality.

4. We investigate the statistical properties of best subset selection proce-
dures for practical problem sizes, which to the best of our knowledge,
have remained largely unexplored to date. We demonstrate the favorable
predictive performance and sparsity-inducing properties of the best sub-
set selection procedures over Lasso, Sparsenet and stepwise regression in
a wide variety of real and synthetic examples for both the least squares
and absolute deviation loss functions.
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The structure of the paper is as follows. In Section 2, we present a brief
overview of MIO, including a summary of the computational advances it
has enjoyed in the last twenty-five years. We present the proposed MIO
formulations for the best subset problem as well as some connections with
the compressed sensing literature for estimating parameters and providing
lower bounds for the MIO formulations that improve their computational
performance. In Section 3, we develop a discrete extension of first order
methods in convex optimization to obtain near optimal solutions for the best
subset problem and establish its convergence properties, a method that may be
of independent interest. In Section 4, we perform a variety of computational
tests on synthetic and real datasets to assess the algorithmic and statistical
performances of our approach for the least squares loss function for both the
classical overdetermined case n > p, and the high-dimensional case p� n. In
Section 5, we report computational results for the least absolute deviation loss
function. In Section 6, we include our concluding remarks.

2 Mixed Integer Optimization Formulations

In this section, we present a brief overview of MIO, including the simply
astonishing advances it has enjoyed in the last twenty-five years. We then
present the proposed MIO formulations for the best subset problem as well
as some connections with the compressed sensing literature for estimating
parameters and providing lower bounds for the MIO formulations that improve
their computational performance.

2.1 Brief Background on MIO

The general form of a Mixed Integer Quadratic Optimization (MIQO) problem
is as follows:

min αTQα + αTa

s.t. Aα ≤ b

αi ∈ {0, 1}, ∀i ∈ I

αj ∈ R+, ∀j /∈ I,

where a ∈ Rm,A ∈ Rk×m,b ∈ Rk and Q ∈ Rm×m (positive semidefinite) are
the given parameters of the problem; R+ denotes the non-negative reals, the
symbol ≤ denotes element-wise inequalities and we optimize over α ∈ Rm
containing both discrete (αi, i ∈ I) and continuous (αi, i /∈ I) variables,
with I ⊂ {1, . . . ,m}. For background on MIO see [4]. Subclasses of MIQO
problems include convex quadratic optimization problems (I = ∅), mixed
integer (Q = 0m×m) and linear optimization problems ( I = ∅,Q = 0m×m).
Modern integer optimization solvers such as Gurobi and CPLEX are able to
tackle MIQO problems.

In the last twenty-five years (1991-2014) the computational power of MIO
solvers has increased at an astonishing rate. In [7], to measure the speedup of
MIO solvers, the same set of MIO problems were tested on the same computers
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using twelve consecutive versions of CPLEX and version-on-version speedups
were reported. The versions tested ranged from CPLEX 1.2, released in
1991 to CPLEX 11, released in 2007. Each version released in these years
produced a speed improvement on the previous version, leading to a total
speedup factor of more than 29,000 between the first and last version tested
(see [7], [37] for details). Gurobi 1.0, a MIO solver which was first released in
2009, was measured to have similar performance to CPLEX 11. Version-on-
version speed comparisons of successive Gurobi releases have shown a speedup
factor of more than 20 between Gurobi 5.5, released in 2013, and Gurobi
1.0 ([7], [37]). The combined machine-independent speedup factor in MIO
solvers between 1991 and 2013 is 580,000. This impressive speedup factor
is due to incorporating both theoretical and practical advances into MIO
solvers. Cutting plane theory, disjunctive programming for branching rules,
improved heuristic methods, techniques for preprocessing MIOs, using linear
optimization as a black box to be called by MIO solvers, and improved linear
optimization methods have all contributed greatly to the speed improvements
in MIO solvers [7].

Figure 1: Log of Peak Supercomputer Speed from 1993–2013.

In addition, the past twenty years have also brought dramatic improve-
ments in hardware. Figure 1 shows the exponentially increasing speed of
supercomputers over the past twenty years, measured in billion floating point
operations per second [1]. The hardware speedup from 1993 to 2013 is approx-
imately 105.5 ∼ 320, 000. When both hardware and software improvements
are considered, the overall speedup1 is approximately 200 billion! MIO solvers
provide both feasible solutions as well as lower bounds to the optimal value.
As the MIO solver progresses towards the optimal solution, the lower bounds
improve and provide an increasingly better guarantee of suboptimality, which
is especially useful if the MIO solver is stopped before reaching the global
optimum. In contrast, heuristic methods do not provide such a certificate of
suboptimality.

1Note that the speedup factors cited here refer to mixed integer linear optimization
problems, not MIQO problems. The speedup factors for MIQO problems are similar.
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The belief that MIO approaches to problems in statistics are not practically
relevant was formed in the 1970s and 1980s and it was at the time justified.
Given the astonishing speedup of MIO solvers and computer hardware in
the last twenty-five years, the mindset of MIO as theoretically elegant but
practically irrelevant is no longer justified. In this paper, we provide empirical
evidence of this fact in the context of the best subset selection problem.

2.2 MIO Formulations for the Best Subset
Selection Problem

We first present a simple reformulation to Problem (1) as a MIO (in fact a
MIQO) problem:

Z1 = min
β,z

1
2‖y −Xβ‖22

s.t. −MUzi ≤ βi ≤MUzi, i = 1, . . . , p

zi ∈ {0, 1}, i = 1, . . . , p
p∑
i=1

zi ≤ k,

(5)

where z ∈ {0, 1}p is a binary variable andMU is a constant such that if β̂ is a
minimizer of Problem (5), then MU ≥ ‖β̂‖∞. If zi = 1, then |βi| ≤ MU and
if zi = 0, then βi = 0. Thus,

∑p
i=1 zi is an indicator of the number of zeros

in β.
Provided that MU is chosen to be sufficently large with MU ≥ ‖β̂‖∞, a

solution to Problem (5) will be a solution to Problem (1). Of course, MU is
not known a priori, and a small value of MU may lead to a solution different
from (1). The choice of MU affects the strength of the formulation and is
critical for obtaining solutions quickly in practice. In Section 2.3 we describe
how to find appropriate values for MU .

Formulation (5) leads to interesting insights, especially via the structure of
the convex hull of its constraints, as illustrated next :

Conv

({
β : |βi| ≤ MUzi, zi ∈ {0, 1}, i = 1, . . . , p,

p∑
i=1

zi ≤ k
})

= {β : ‖β‖∞ ≤MU , ‖β‖1 ≤MUk}
⊆ {β : ‖β‖1 ≤MUk}.

Thus, the minimum of Problem (5) is lower-bounded by the optimum objective
value of both the following convex optimization problems:

Z2 := min
β

1

2
‖y −Xβ‖22 subject to ‖β‖∞ ≤MU , ‖β‖1 ≤MUk (6)

Z3 := min
β

1

2
‖y −Xβ‖22 subject to ‖β‖1 ≤MUk, (7)
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where (7) is the familiar Lasso in constrained form. This is a weaker relaxation
than formulation (6), which in addition to the `1 constraint on β, has box-
constraints controlling the values of the βi’s. It is easy to see that the following
ordering exists:

Z3 ≤ Z2 ≤ Z1,

with the inequalities being strict in most instances.
In terms of approximating the optimal solution to Problem (5), the MIO

solver begins by first solving a continuous relaxation of Problem (5). The
Lasso formulation (7) is weaker than this root node relaxation. Additionally,
MIO is typically able to significantly improve the quality of the root node
solution as the MIO solver progresses toward the optimal solution.

To motivate the reader we provide an example of the evolution (see Figure 2)
of the MIO formulation (8) for the Diabetes dataset [21], with n = 350, p = 64
(for further details on the dataset see Section 4).

Since formulation (5) is sensitive to the choice of MU , we consider an
alternative MIO formulation based on Specially Ordered Sets [4] as described
next.

Formulations via Specially Ordered Sets Any feasible solution to for-
mulation (5) will have (1− zi)βi = 0 for every i ∈ {1, . . . , p}. This constraint
can be modeled via integer optimization using Specially Ordered Sets of Type
1 [4] (SOS-1). In an SOS-1 constraint, at most one variable in the set can take
a nonzero value, that is

(1− zi)βi = 0 ⇐⇒ (βi, 1− zi) : SOS-1,

for every i = 1, . . . , p. This leads to the following formulation of (1):

min
β,z

1
2 ‖y −Xβ‖22

s.t. (βi, 1− zi) : SOS-1, i = 1, . . . , p

zi ∈ {0, 1}, i = 1, . . . , p
p∑
i=1

zi ≤ k,

(8)

The objective function in Problem (8) is a convex quadratic function in the
continuous variable β, which can be formulated explicitly as:

min
β,z

1
2 βTXTXβ − 〈X′y,β〉+ 1

2 ‖y‖
2
2

s.t. (βi, 1− zi) : SOS-1, i = 1, . . . , p

zi ∈ {0, 1}, i = 1, . . . , p
p∑
i=1

zi ≤ k

−MU ≤ βi ≤MU , i = 1, . . . , p

‖β‖1 ≤M`.

(9)
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Figure 2: The typical evolution of the MIO formulation (8) for the diabetes
dataset with n = 350, p = 64 with k = 6 (left panel) and k = 7 (right panel). The
top panel shows the evolution of upper and lower bounds with time. The lower
panel shows the evolution of the corresponding MIO gap with time. Optimal
solutions for both the problems are found in a few seconds in both examples,
but it takes 10-20 minutes to certify optimality via the lower bounds. Note
that the time taken for the MIO to certify convergence to the global optimum
increases with increasing k.

We also provide problem-dependent constants MU and M` ∈ [0,∞]. MU

provides an upper bound on the absolute value of the regression coefficients
and M` provides an upper bound on the `1-norm of β. Adding these bounds
typically leads to improved performance of the MIO. In Section 2.3, we describe
an approach to compute these parameters from the data.
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We also consider another formulation for (9):

min
β,z,ζ

1
2 ζT ζ − 〈X′y,β〉+ 1

2 ‖y‖
2
2

s.t. ζ = Xβ

(βi, 1− zi) : SOS-1, i = 1, . . . , p

zi ∈ {0, 1}, i = 1, . . . , p
p∑
i=1

zi ≤ k

−MU ≤ βi ≤MU , i = 1, . . . , p

‖β‖1 ≤M`

−Mζ
U ≤ ζi ≤M

ζ
U , i = 1, . . . , n

‖ζ‖1 ≤Mζ
` ,

(10)

where the optimization variables are β ∈ Rp, ζ ∈ Rn, z ∈ {0, 1}p and
MU ,M`,Mζ

U ,M
ζ
` ∈ [0,∞] are problem specific parameters. Note that the

objective function in formulation (10) involves a quadratic form in n variables
and a linear function in p variables. Problem (10) is equivalent to the following
variant of the best subset problem:

min
β

1
2‖y −Xβ‖22

s.t. ‖β‖∞ ≤MU , ‖β‖1 ≤M`

‖Xβ‖∞ ≤Mζ
U , ‖Xβ‖1 ≤Mζ

` .

(11)

Formulations (9) and (10) differ in the size of the quadratic forms that
are involved. The current state-of-the-art MIO solvers are better-equipped
to handle mixed integer linear optimization problems than MIQO problems.
Formulation (9) has fewer variables but a quadratic form in p variables—we
find this formulation more useful in the n > p regime, with p in the 100s.
Formulation (10) on the other hand has more variables, but involves a quadratic
form in n variables—this formulation is more useful for high-dimensional
problems p� n, with n in the 100s and p in the 1000s.

The bounds on β and ζ are not required, but if these constraints are provided,
they improve the strength of the MIO formulation. We next show how these
bounds can be computed from given data.

2.3 Specification of Parameters

In this section, we obtain estimates for the quantities MU ,M`,Mζ
U ,M

ζ
`

such that an optimal solution to problem (11) is also an optimal solution to
Problem (1), and vice-versa.
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Coherence and Restricted Eigenvalues of a Model Matrix

Given a model matrix X, [46] introduced the cumulative coherence function

µ[k] := max
|I|=k

max
j /∈I

∑
i∈I
|〈Xj ,Xi〉|,

where, Xj , j = 1, . . . , p represent the columns of X, i.e., features.
For k = 1, we obtain the notion of coherence introduced in [20, 19] as a

measure of the maximal pairwise correlation in absolute value of the columns
of X:

µ := µ[1] = max
i6=j
|〈Xi,Xj〉|.

[14, 12] (see also [10] and references therein) introduced the notion that a
matrix X satisfies a restricted eigenvalue condition if

λmin(X′IXI) ≥ ηk for every I ⊂ {1, . . . , p} : |I| ≤ k, (12)

where λmin(X′IXI) denotes the smallest eigenvalue of the matrix X′IXI . An
inequality linking µ[k] and ηk is as follows.

Proposition 1. The following bounds hold:

(a) [46]: µ[k] ≤ µ · k.

(b) [19] : ηk ≥ 1− µ[k − 1] ≥ 1− µ · (k − 1).

The computations of µ[k] and ηk for general k are difficult, while µ is simple
to compute. Proposition 1 provides bounds for µ[k] and ηk in terms of the
coherence µ.

Operator Norms of Submatrices

The (p, q) operator norm of matrix A is

‖A‖p,q := max
‖u‖q=1

‖Au‖p.

We will use extensively here the (1, 1) operator norm. We assume that each col-
umn vector of X has unit `2-norm. The results derived in the next proposition
borrow and enhance techniques developed by [46] in the context of analyzing
the `1—`0 equivalence in compressed sensing.

Proposition 2. For any I ⊂ {1, . . . , p} with |I| = k we have:

(a) ‖X′IXI − I‖1,1 ≤ µ[k − 1].

(b) If the matrix X′IXI is invertible and ‖X′IXI − I‖1,1 < 1, then

‖(X′IXI)
−1‖1,1 ≤

1

1− µ[k − 1]
. (13)
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Proof

(a) Given a set I, we define G := X′IXI − I, and let gij denote the (i, j)th
entry of G. For any u ∈ Rk we have

max
‖u‖1=1

‖Gu‖1 = max
‖u‖1=1

 k∑
i=1

∣∣∣∣∣∣
k∑
j=1

gijuj

∣∣∣∣∣∣


≤ max
‖u‖1=1

 k∑
i=1

k∑
j=1

|uj ||gij |


= max
‖u‖1=1

 k∑
j=1

|uj |
∑
i6=j

|gij |

 (gjj = 0)

≤ max
‖u‖1=1

(µ[k − 1]‖u‖1)

∑
i6=j

|gij | ≤ µ[k − 1]


= µ[k − 1].

(b) Using X′IXI = I + G and standard power-series convergence (which is
valid since ‖G‖1,1 < 1) we obtain

‖(X′IXI)
−1‖1,1 = ‖ (I + G)

−1 ‖1,1 =
∞∑
i=0

‖G‖i1,1

≤ 1

1− ‖G‖1,1
≤ 1

1− µ[k − 1]
. �

We note that Part (b) also appears in [46] for the operator norm
‖(X′IXI)

−1‖∞,∞.

Given a set I ⊂ {1, . . . , p} with |I| = k we let β̂I denote the least squares re-
gression coefficients obtained by regressing y on XI , i.e., β̂I = (X′IXI)

−1X′Iy.

If we append β̂I with zeros in the remaining coordinates we obtain β̂:

β̂ ∈ arg min
β:βi=0,i/∈I

‖y −Xβ‖22.

Note that β̂ depends on I but we will suppress the dependence on I for
notational convenience.

Recall that Xj , j = 1, . . . , p represent the columns of X; and we will use
xi, i = 1, . . . , n to denote the rows of X. As discussed above ‖Xj‖ = 1. We
order the correlations |〈Xj ,y〉|:

|〈X(1),y〉| ≥ |〈X(2),y〉| ≥ . . . ≥ |〈X(p),y〉|.

We finally denote by ‖xi‖1:k the sum of the top k absolute values of the entries
of xij , j ∈ {1, 2, . . . , p}.
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Theorem 1. For any k ≥ 1 such that µ[k − 1] < 1 any optimal solution β̂ to
(1) satisfies:

(a) ‖β̂‖1 ≤
1

1− µ[k − 1]

k∑
j=1

|〈X(j),y〉|. (14)

(b) ‖β̂‖∞ ≤ min

 1

ηk

√√√√ k∑
j=1

|〈X(j),y〉|2,
1
√
ηk
‖y‖2

 . (15)

(c) ‖Xβ̂‖1 ≤ min

{
n∑
i=1

‖xi‖∞‖β̂‖1,
√
k‖y‖2

}
. (16)

(d) ‖Xβ̂‖∞ ≤
(

max
i=1,...,n

‖xi‖1:k
)
‖β̂‖∞. (17)

Proof

(a) Since β̂I = (X′IXI)
−1X′Iy we have

‖β̂‖1 = ‖β̂I‖1 ≤ ‖(X′IXI)
−1‖1,1‖X′Iy‖1. (18)

Note that

‖X′Iy‖1 =
∑
j∈I
|〈Xj ,y〉| ≤ max

I,|I|=k

∑
j∈I
|〈Xj ,y〉| ≤

k∑
j=1

|〈X(j),y〉|. (19)

Applying (13) and (19) to (18), we obtain (14) .

(b) We write β̂I = Ay for A = (X′IXI)
−1X′I . If ai, i = 1, . . . , k denote the

rows of A we have:

‖β̂I‖∞ = max
i=1,...,k

|〈ai,y〉| ≤
(

max
i=1,...,k

‖ai‖2
)
‖y‖2. (20)

For every i = 1, . . . , k we have

‖ai‖2 ≤ max
‖u‖2=1

‖Au‖2

= max
‖u‖2=1

‖(X′IXI)
−1X′Iu‖2

≤λmax

(
(X′IXI)

−1X′I
)

= max

{
1

d1
, . . . ,

1

dk

}
, (21)

where d1, . . . , dk are the (nonzero) singular values of the matrix XI . To
see how one arrives at (21) let us denote the singular value decomposition
of XI = UDV′ with D = diag (d1, d2, . . . , dk) . We then have

(X′IXI)
−1X′I = (VD−2V′)(UDV′)′ = VD−1U′
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and the singular values of (X′IXI)
−1X′I are thus 1/di, i = 1, . . . , k.

The eigenvalues of X′IXI are d2i and from (12) we obtain that d2i ≥ ηk.
Using (21) we thus obtain

max
i=1,...,k

‖ai‖2 ≤
1
√
ηk
. (22)

Substituting the bound (22) to (20) we obtain

‖β̂I‖∞ ≤
1
√
ηk
‖y‖2. (23)

Using the notation Ã = (X′IXI)
−1, we have

‖β̂I‖∞ = max
i=1,...,k

|〈ãi,X′Iy〉|

≤
(

max
i=1,...,k|

‖ãi‖2
)
‖X′Iy‖2

≤λmax

(
(X′IXI)

−1) ‖X′Iy‖2
=

(
max

i=1,...,k

1

d2i

)
·
√∑

j∈I
|〈Xj ,y〉|2

≤ 1

ηk

√√√√ k∑
j=1

|〈X(j),y〉|2. (24)

Combining (23) and (24) we obtain (15).

(c) We have

‖XI β̂I‖1 ≤
n∑
i=1

|〈xi, β̂I〉| ≤
n∑
i=1

‖xi‖∞‖β̂I‖1 =
n∑
i=1

‖xi‖∞‖β̂I‖1. (25)

Let PI := XI(X
′
IXI)

−1X′I denote the projection onto the columns of
XI . We have ‖PIy‖2 ≤ ‖y‖2, leading to:

‖XI β̂I‖1 = ‖PIy‖1 ≤
√
k‖PIy‖2 ≤

√
k‖y‖2, (26)

where we used that for any a ∈ Rm, we have
√
m‖a‖2 ≥ ‖a‖1. Combin-

ing (25) and (26) we obtain (16).

(d) For any vector βI which has zero entries in the coordinates outside I,
we have:

‖XβI‖∞ ≤ max
i=1,...,n

|〈xi,βI〉| ≤ max
i=1,...,n

‖xi‖1:k‖βI‖∞,

leading to (17). �
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2.4 A Simple Global Lower Bound

In this section, we show that under certain restricted eigenvalue conditions on
the matrix X, it is possible to compute global lower bounds to the minimum
objective value of (1). Though these lower bounds can be improved by MIO
techniques, they require sophisticated computational procedures—the method
we present here can be computed with minimal computational effort.

Using (12) we obtain a global lower bound to (1) as follows:

min
‖β‖0≤k

‖y −Xβ‖22 ≥ min
‖β‖0≤k

(
‖y‖22 − 2〈X′y,β〉+ ηk‖β‖22

)
= min
‖β‖0≤k

(
ηk

∥∥∥∥β − 1

η k
X′y

∥∥∥∥2
2

− ηk
∥∥∥∥1

η k
X′y

∥∥∥∥2
2

+ ‖β‖22

)
=− 1

η k
‖Hk(X′y)‖22 + ‖y‖22, (27)

where Hk(·) is the operator defined in (30).
Clearly (27) is a lower bound to (1) and can be computed with very little

computational effort once ηk is known. Note that if n > p, then λmin(X′X)
gives a lower bound to ηk (provided it is not zero). If p > n, λmin(X′X) = 0.
Proposition 1(b) provides lower bounds on ηk.

3 Discrete First Order Algorithms

In this section, we develop a discrete extension of first order methods in convex
optimization [40, 39] to obtain near optimal solutions for Problem (1) and its
variant for the least absolute deviation (LAD) loss function. Our approach
applies to the problem of minimizing any smooth convex function subject to
cardinality constraints.

We will use these discrete first order methods to obtain solutions to warm
start the MIO formulation. In Section 4, we will demonstrate how these
methods greatly enhance the performance of the MIO.

3.1 Algorithms for Minimizing Smooth Functions
Subject to Cardinality Constraints

Related Work and Contributions In the signal processing literature [8, 9]
proposed iterative hard-thresholding algorithms, in the context of `0-regularized
least squares problems, i.e., Problem (4). The authors establish convergence
properties of the algorithm under the assumption that X satisfies coherence [8]
or Restricted Isometry Property [9]. The method we propose here applies to a
larger class of cardinality constrained optimization problems of the form (28),
in particular, in the context of Problem (1) our algorithm and its convergence
analysis do not require any form of restricted isometry property on the model
matrix X.

Our proposed algorithm borrows ideas from projected gradient descent
methods in first order convex optimization problems [40] and generalizes it to
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the discrete optimization Problem (28). We also derive new global convergence
results for our proposed algorithms as presented in Theorem 2. Our proposal,
with some novel modifications also applies to the non-smooth least absolute
deviation loss with cardinality constraints as discussed in Section 3.3.

Consider the following optimization problem:

min
β

g(β) subject to ‖β‖0 ≤ k, (28)

where g(β) ≥ 0 is convex and has Lipschitz continuous gradient:

‖∇g(β)−∇g(β̃)‖ ≤ `‖β − β̃‖. (29)

The first ingredient of our approach is the observation that when g(β) =
‖β − c‖22 for a given c, problem (28) admits a closed form solution.

Proposition 3. An optimal solution, denoted as Hk(c), to the problem

min
‖β‖0≤k

‖β − c‖22 , (30)

can be computed as follows: Hk(c) retains the k largest (in absolute value)
elements of c ∈ Rp and sets the rest to zero, i.e., if |c(1)| ≥ |c(2)| ≥ . . . ≥ |c(p)|,
denote the ordered values of the absolute values of the vector c, then:

(Hk(c))i =

{
ci, if i ∈ {(1), . . . , (k)},
0, otherwise.

(31)

Proof
We provide a proof of this simple observation, for the sake of completeness.

It suffices to consider |ci| > 0 for all i. Let β be an optimal solution to
Problem (30) and let S := {i : βi 6= 0}. The objective function is given by∑
i6∈S |ci|2 +

∑
i∈S(βi − ci)2. Note that by selecting βi = ci for i ∈ S, we

can make the objective function
∑
i6∈S |ci|2. Thus, to minimize the objective

function, S must correspond to the indices of the largest k values of |ci|, i ≥ 1.�
The operator (31) is also known as the hard-thresholding operator [18]—a

notion that arises in the context of the following related optimization problem:

β̂ ∈ arg min
β

1

2
‖β − c‖22 + λ‖β‖0, (32)

where β̂ admits a simple closed form expression given by β̂i = ci if |ci| > λ
and β̂i = 0 otherwise, for i = 1, . . . , p.

Remark 1. There is an important difference between the minimizers of
Problems (30) and (32). For Problem (32), the smallest (in absolute value)
non-zero element in β̂ is greater than λ in absolute value. On the other
hand, in Problem (30) there is no lower bound to the minimum (in absolute
value) non-zero element of a minimizer, i.e., Hk(c). This needs to be taken
care of using subtle techniques, while analyzing the convergence properties of
Algorithm 1 (Section 3.2).
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Given a current solution β, the second ingredient of our approach is to upper
bound the function g(η) around g(β). To do so, we use ideas from projected
gradient descent methods in first order convex optimization problems [40, 39].

Proposition 4. ([40, 39]) For a convex function g(β) satisfying condition (29)
and for any L ≥ ` we have:

g(η) ≤ QL(η,β) := g(β) +
L

2
‖η − β‖22 + 〈∇g(β),η − β〉 (33)

for all β,η with equality holding at β = η.

Applying Proposition 3 to the upper bound QL(η,β) in Proposition 4 we
obtain

arg min
‖η‖0≤k

QL(η,β)

= arg min
‖η‖0≤k

(
L

2

∥∥∥∥η − (β − 1

L
∇g(β)

)∥∥∥∥2
2

− 1

2L
‖∇g(β)‖22 + g(β)

)

= arg min
‖η‖0≤k

∥∥∥∥η − (β − 1

L
∇g(β)

)∥∥∥∥2
2

= Hk

(
β − 1

L
∇g(β)

)
, (34)

where Hk(·) is defined in (31). In light of (34) we are now ready to present
Algorithm 1 to find a local optimal solution to problem (28).

Algorithm 1

Input: g(β), L, ε.
Output: A local optimal solution β∗.
Algorithm:

1. Initialize with β1 ∈ Rp such that ‖β1‖0 ≤ k.

2. For m ≥ 1, apply (34) with β = βm to obtain βm+1 as:

βm+1 = Hk

(
βm −

1

L
∇g(βm)

)
(35)

3. Repeat Step 2, until ‖βm+1 − βm‖2 ≤ ε.

4. Let βm := (βm1, . . . , βmp) denote the current estimate and let I =
Supp(βm) := {i : βmi 6= 0}. Solve the continuous optimization problem:

min
β,βi=0, i/∈I

g(β), (36)

and let β∗ be a minimizer.

The convergence properties of Algorithm 1 are presented in Section 3.2. A
variant of Algorithm 1 that has better empirical performance and uses line
searches is presented next.
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Algorithm 2 (with Line Search)

1. Initialize with β1 ∈ Rp such that ‖β1‖0 ≤ k.

2. For m ≥ 1,

ηm =Hk

(
βm −

1

L
∇g(βm)

)
,

βm+1 =λmηm + (1− λm)βm, (37)

where λm is chosen to minimize the one-dimensional optimization prob-
lem:

λm ∈ arg min
λ

g (ληm + (1− λ)βm) . (38)

3. Repeat Step 2, until ‖ηm+1 − ηm‖2 ≤ ε.

4. Let ηm denote the current estimate and let I = Supp(ηm). Solve problem
(36) and let β∗ be a mininizer.

Note that the iterate βm in Algorithm 2 need not be k-sparse (i.e., need
not satisfy: ‖βm‖0≤k), however, ηm is k-sparse (‖ηm‖0 ≤ k). Moreover, the
sequence may not lead to a decreasing set of objective values, but it satisfies:

g(βm+1) ≤ g(ηm) � g(βm).

3.2 Convergence Analysis of Algorithm 1

In this section, we study convergence properties for Algorithm 1. Before we
embark on the analysis, we need to define the notion of first order optimality
for Problem (28).

Definition 1. Given an L ≥ `, the vector η ∈ Rp is said to be a first order
stationary point of Problem (28) if ‖η‖0 ≤ k and it satisfies the following fixed
point equation:

η = Hk

(
η − 1

L
∇g(η)

)
. (39)

We next define the notion of an ε-approximate first order stationary point
of Problem (28):

Definition 2. Given an ε > 0, and L ≥ ` we say that η satisfies an ε-
approximate first order optimality condition of Problem (28) if ‖η‖0 ≤ k
and ∥∥∥∥η −Hk

(
η − 1

L
∇g(η)

)∥∥∥∥
2

≤ ε.

Let βm = (βm1, . . . , βmp) and 1m = (e1, . . . , ep) with ej = 1, if βmj 6= 0,
and ej = 0, if βmj = 0, j = 1, . . . , p, i.e., 1m represents the sparsity pattern of
the support of βm.
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Proposition 5. Consider g(β) and ` as defined in (28) and (29). Let βm,m ≥
1 be the sequence generated by Algorithm 1. Then we have:

(a) For any L ≥ `, the sequence g(βm) satisfies

g(βm)− g(βm+1) ≥ L− `
2

∥∥βm+1 − βm
∥∥2
2
, (40)

is decreasing and converges.

(b) If L > `, then βm+1 − βm → 0 as m→∞.

(c) If L > ` and ‖ lim infm→∞ βm‖0 = k then the sequence 1m converges
after finitely many iterations, i.e., there exists an iteration index M∗

such that 1m = 1m+1 for all m ≥M∗. Furthermore, the sequence βm is
bounded and converges to a first order stationary point.

(d) If L > ` and ‖ lim infm→∞ βm‖0 < k, then g(βm) → g(β∗) where
β∗ ∈ arg min g(β) is an unconstrained minimizer.

Proof

(a) Let β be a vector satisfying ‖β‖0 ≤ k. Using the notation η̂ =
Hk

(
β − 1

L∇g(β)
)

we have the following chain of inequalities:

g(β) = QL(β,β)

≥ inf
‖η‖0≤k

QL(η,β)

= inf
‖η‖0≤k

(
L

2
‖η − β‖22 + 〈∇g(β),η − β〉+ g(β)

)
= inf
‖η‖0≤k

(
L

2

∥∥∥∥η − (β − 1

L
∇g(β)

)∥∥∥∥2
2

− 1

2L
‖∇g(β)‖22 + g(β)

)

=

(
L

2
‖η̂ −

(
β − 1

L
∇g(β)

)
‖22 −

1

2L
‖∇g(β)‖22 + g(β)

)
(From (34))

=

(
L

2
‖η̂ − β‖22 + 〈∇g(β), η̂ − β〉+ g(β)

)
=

(
L− `

2
‖η̂ − β‖22 +

`

2
‖η̂ − β‖22 + 〈∇g(β), η̂ − β〉+ g(β)

)
≥ L− `

2
‖η̂ − β‖22 +

(
`

2
‖η̂ − β‖22 + 〈∇g(β), η̂ − β〉+ g(β)

)
︸ ︷︷ ︸

Q`(η̂,β)

≥ L− `
2
‖η̂ − β‖22 + g(η̂). (From (33))

This chain of inequalities leads to:

g(β)− g(η̂) ≥ L− `
2
‖η̂ − β‖22 . (41)
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Applying (41) for β = βm and η̂ = βm+1, the vectors generated by
Algorithm 1, we obtain (40). This implies that the objective values g(βm)
are decreasing and since the sequence is bounded below (g(β) ≥ 0), we
obtain that g(βm) converges as m→∞.

(b) If L > ` and from part (a), the result follows.

(c) We begin by observing that the condition ‖ lim infm→∞ βm‖0 = k is
equivalent to lim infm→∞mini:βmi 6=0 |βmi| > 0. We next prove that the
support of βm converges. For the purpose of establishing of contradiction
suppose that the support does not converge. Then, there are infinitely
many values of m′ such that 1m′ 6= 1m′+1. Using the fact that ‖βm‖0 = k
for all large m we have

‖βm′ − βm′+1‖2 ≥
√
β2
m′,i + β2

m′+1,j ≥
|βm′,i|+ |βm′+1,j |√

2
, (42)

where i, j are such that βm′+1,i = βm′,j = 0. As m′ → ∞, the
quantity in the rhs of (42) remains bounded away from zero since
lim infm→∞mini:βmi 6=0 |βmi| > 0. This contradicts the fact that βm+1−
βm → 0, as established in part (b). Thus, 1m converges, and since
1m is a discrete sequence, it converges after finitely many iterations,
that is 1m = 1m+1 for all m ≥ M∗. Algorithm 1 becomes a vanilla
gradient descent algorithm, restricted to the space 1m for m ≥ M∗.
Since a gradient descent algorithm for minimizing a convex function over
a closed convex set leads to a sequence of iterates that converge [42, 40],
we conclude that Algorithm 1 converges. Therefore, the sequence βm
converges to β̂, a first order stationarity point:

Hk

(
β̂ − 1

L
∇g(β̂)

)
= β̂.

(d) Let Im ⊂ {1, . . . , p} denote the set of k largest values of the vector(
βm − 1

L∇g(βm)
)

in absolute value. By the definition of Hk

(
βm −

1
L∇g(βm)

)
, we have∣∣∣∣(βm − 1

L
∇g(βm)

)
i

∣∣∣∣ ≥
∣∣∣∣∣
(
βm −

1

L
∇g(βm)

)
j

∣∣∣∣∣ ,
for all i, j with i ∈ Im and j /∈ Im. Thus,

lim inf
m→∞

min
i∈Im

∣∣∣∣(βm − 1

L
∇g(βm)

)
i

∣∣∣∣
≥ lim inf

m→∞
max
j /∈Im

∣∣∣∣∣
(
βm −

1

L
∇g(βm)

)
j

∣∣∣∣∣ . (43)

Moreover,(
βm −Hk

(
βm −

1

L
∇g(βm)

))
i

=


1

L
(∇g(βm))i, i ∈ Im,

βm,i, otherwise.
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Using the fact that βm+1 − βm → 0 we have

(∇g(βm))i → 0, i ∈ Im and βm,j → 0, j /∈ Im

as m→∞. Combining with (43) we have that:

lim inf
m→∞

min
i∈Im

|βmi| ≥ lim inf
m→∞

max
j /∈Im

1

L

∣∣∣(∇g(βm))j

∣∣∣
=

1

L
lim inf
m→∞

‖∇g(βm)‖∞.

Since, lim infm→∞ mini∈Im |βmi| = 0 by hypothesis, the lhs of the
above inequality equals zero, which leads to lim infm→∞ ‖∇g(βm)‖∞ =
0. Thus, there is a subsequence m′ ⊂ {1, 2, . . . , } such that ∇g(βm′)→ 0,
i.e., lim infm→∞ ∇g(βm)→ 0. Since, g(βm) is a decreasing sequence,
this implies that g(βm)→ g(β∗), where, β∗ is an unconstrained (without
cardinality constraints) solution to min g(β). �

Proposition 5 establishes that Algorithm 1 either converges to a first order
stationarity point (part (c)) or it converges to a global optimal solution (part
(d)), but does not quantify the rate of convergence. We next characterize the
rate of convergence of the algorithm to an ε-approximate first order stationary
point.

Theorem 2. Let L > ` and β̂ denote a first order stationary point of Algo-
rithm 1. After M iterations Algorithm 1 satisfies

min
m=1,...,M

‖βm+1 − βm‖22 ≤
2(g(β1)− g(β̂))

M(L− `)
, (44)

where g(βm) ↓ g(β̂) as m→∞.

Proof
Summing inequalities (40) for 1 ≤ m ≤M. we obtain

M∑
m=1

(
g(βm)− g(βm+1)

)
≥ L− `

2

M∑
m=1

‖βm+1 − βm‖22, (45)

leading to

g(β1)− g(βM+1) ≥ M(L− `)
2

min
m=1,...,M

‖βm+1 − βm‖22.

Since the decreasing sequence g(βm+1) converges to g(β̂) by Proposition 5 we
have:

g(β1)− g(β̂)

M
≥
g(β1)− g(βM+1)

M
≥ (L− `)

2
min

m=1,...,M
‖βm+1−βm‖22. �

Theorem 2 implies that for any ε > 0 there exists M = O( 1
ε ) such that for

some 1 ≤ m∗ ≤M
‖βm∗+1 − βm∗‖22 ≤ ε.
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Polishing Coefficients on the Active Set

Algorithm 1 detects the active set after a few iterations. Once the active set
stabilizes, the algorithm may take a number of iterations to estimate the values
of the regression coefficients on the active set to a high accuracy level.

In this context, we found the following simple polishing of coefficients to be
useful. When the algorithm has converged to a tolerance of ε (≈ 10−4), we
fix the current active set, I, and solve the following lower-dimensional convex
optimization problem:

min
β,βi=0,i/∈I

g(β). (46)

In the context of the least squares and the least absolute deviation problems, the
optimization Problem (46) reduces to to a smaller dimensional least squares
and a linear optimization problem respectively, which can be solved very
efficiently up to a very high level of accuracy.

3.3 Application to Least Squares

For the support constrained problem with squared error loss, we have

g(β) = 1
2‖y −Xβ‖22, ∇g(β) = −X′(y −Xβ)

The general algorithmic framework developed above applies in a straightforward
fashion for this special case. Note that for this case ` = λmax(X′X).

The polishing of the regression coefficients in the active set can be performed
via a least squares problem on y,XI , where I denotes the support of the
regression coefficients.

3.4 Application to Least Absolute Deviation

We will now show how the method proposed in the previous section applies to
the least absolute deviation problem with support constraints in β:

minβ g1(β) := ‖Y −Xβ‖1
s.t. ‖β‖0 ≤ k.

(47)

Since g1(β) is non-smooth, our framework does not apply directly. We smooth
the non-differentiable g1(β) so that we can apply Algorithms 1 and 2. Follow-
ing [38] we make use of the following min-max representation of g1(β):

g1(β) = sup 〈Y −Xβ,w〉
s.t. ‖w‖∞ ≤ 1

(48)

and perturb the linear functional in (48) as follows:

g1(β; τ) = sup 〈Y −Xβ,w〉 − τ
2‖w‖

2
2

s.t. ‖w‖∞ ≤ 1.
(49)

The following properties follow from [38]:

−τn
2
≤ g1(β; τ)− g1(β) ≤ τn

2
, ∀β. (50)
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‖∇g1(β; τ)−∇g1(β̃; τ)‖ ≤ λmax(X′X)

τ
‖β − β̃‖. (51)

The parameter τ controls the tightness of approximation (50) and also the
smoothness (51) of g1(β; τ). In order to obtain a good approximation to
Problem (47), we found the following strategy to be useful in practice:

1. Fix τ > 0, initialize with β0 ∈ Rp and repeat the following steps [2]—[3]
till convergence:

2. Apply Algorithm 1 (or Algorithm 2) to the smooth function g1(β; τ).
Let β∗τ be the limiting solution.

3. Decrease τ ← τγ for some pre-defined constant γ = 0.8 (say), and go
back to step [1] with β0 = β∗τ . Exit if τ < TOL, for some pre-defined
tolerance.

4 Computational Experiments for Subset
Selection with Least Squares Loss

In this section, we present a variety of computational tests to assess the
algorithmic and statistical performances of our approach. We consider both
the classical overdetermined case with n > p (Section 4.2) and the high
dimensional p� n case (Section 4.3) for the least squares loss function with
support constraints.

4.1 Description of Experimental Data

We demonstrate the performance of our proposal via a series of experiments
on both synthetic and real data.

Synthetic Datasets. We consider a collection of problems where xi ∼
N(0,Σ), i = 1, . . . , n are independent realizations from a p-dimensional multi-
variate normal distribution with mean zero and covariance matrix Σ := (σij).
The columns of the X matrix were subsequently standardized to have unit `2
norm. For a fixed Xn×p, we generated the response y as follows: y = Xβ0 + ε,

where εi
iid∼ N(0, σ2). We denote the number of nonzeros in β0 by k0. The

choice of X,β0, σ determines the Signal-to-Noise Ratio (SNR) of the problem,
which is defined as:

SNR =
var(x′β0)

σ2
.

We considered the following four different examples:
Example 1: We took σij = ρ|i−j| for i, j ∈ {1, . . . , p} × {1, . . . , p}. We
consider different values of k0 ∈ {5, 10} and β0

i = 1 for k0 equi-spaced values2

of i in the range {1, 2, . . . , p}.
2In the case where exactly equi-spaced values are not possible we rounded the indices to

the nearest large integer value.
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Example 2: We took Σ = Ip×p, k0 = 5 and β0 = (1′5×1,0
′
p−5×1)′ ∈ Rp.

Example 3: We took Σ = Ip×p, k0 = 10 and β0
i = 1

2 + (10 − 1
2 ) (i−1)

k0
, i =

1, . . . , 10 and β0
i = 0,∀i > 10 — i.e., a vector with ten nonzero entries, with

the nonzero values being equally spaced in the interval [12 , 10].
Example 4: We took Σ = Ip×p, k0 = 6 and β0 = (−10,−6,−2, 2, 6, 10,0p−6),
i.e., a vector with six nonzero entries, equally spaced in the interval [−10, 10].

Real Datasets. We considered the Diabetes dataset analyzed in [21]. We
used the dataset with all the second order interactions included in the model,
which resulted in 64 predictors. We reduced the sample size to n = 350 by
taking a random sample and standardized the response and the columns of
the model matrix to have zero means and unit `2-norm.

In addition to the above, we also considered a real microarray dataset, the
Leukemia data [16]. We downloaded the processed dataset from http://stat.
ethz.ch/~dettling/bagboost.html, which had n = 72 binary responses and
more than 3000 predictors. We standardized the response and columns of
features to have zero means and unit `2-norm. We reduced the set features to
1000 by retaining the features maximally correlated (in absolute value) to the
response. We call the resulting feature matrix Xn×p with n = 72, p = 1000.
We then generated a semi-synthetic dataset with continuous response as
y = Xβ0 + ε, where the first five coefficients of β0 were taken as one and the

rest as zero. The noise was distributed as εi
iid∼ N(0, σ2), with σ2 chosen to

get a SNR=7.

Computer Specifications and Software Computations were carried out
in a linux 64 bit server—Intel(R) Xeon(R) eight-core processor @ 1.80GHz, 16
GB of RAM for the overdetermined n > p case and in a Dell Precision T7600
computer with an Intel Xeon E52687 sixteen-core processor @ 3.1GHz, 128GB
of Ram for the high-dimensional p� n case. The discrete first order methods
were implemented in Matlab 2012b. We used Gurobi [29] version 5.5 and
the Matlab interface to Gurobi for all of our experiments, apart from the
computations for synthetic data for n > p, which were done in Gurobi via its
Python 2.7 interface.

4.2 The Overdetermined Regime: n > p

Using the Diabetes dataset and synthetic datasets, we demonstrate the com-
bined effect of using the discrete first order methods with the MIO approach.
Together, these methods show improvements in obtaining good upper bounds
and in closing the MIO gap to certify global optimality. Using synthetic
datasets where we know the true linear regression model, we perform side-by-
side comparisons of this method with several other state-of-the-art algorithms
designed to estimate sparse linear models.
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4.2.1 Obtaining Good Upper Bounds

We conducted experiments to evaluate the performance of our methods in
terms of obtaining high quality solutions for Problem (1).

We considered the following three algorithms:

(a) Algorithm 2 with fifty random initializations3. We took the solution
corresponding to the best objective value.

(b) MIO with cold start, i.e., formulation (9) with a time limit of 500 seconds.

(c) MIO with warm start. This was the MIO formulation initialized with
the discrete first order optimization solution obtained from (a). This
was run for a total of 500 seconds.

To compare the different algorithms in terms of the quality of upper bounds,
we run for every instance all the algorithms and obtain the best solution among
them, say, f∗. If falg denotes the value of the best subset objective function
for method “alg”, then we define the relative accuracy of the solution obtained
by “alg” as:

Relative Accuracy = (falg − f∗)/f∗, (52)

where alg ∈ {(a), (b), (c)} as described above.
We did experiments for the Diabetes dataset for different values of k (see

Table 1). For each of the algorithms we report the amount of time taken by
the algorithm to reach the best objective value during the time of 500 seconds.

k
Discrete First Order MIO Cold Start MIO Warm Start
Accuracy Time Accuracy Time Accuracy Time

9 0.1306 1 0.0036 500 0 346
20 0.1541 1 0.0042 500 0 77
49 0.1915 1 0.0015 500 0 87
57 0.1933 1 0 500 0 2

Table 1: Quality of upper bounds for Problem (1) for the Diabetes dataset, for
different values of k. We see that the MIO equipped with warm starts deliver the best
upper bounds in the shortest overall times. The run time for the MIO with warm start
includes the time taken by the discrete first order method (which were all less than a
second).

Using the discrete first order methods in combination with the MIO algorithm
resulted in finding the best possible relative accuracy in a matter of a few
minutes.

3we took fifty random starting values around 0 of the form min(i− 1, 1)ε, i = 1, . . . , 50,
where ε ∼ N(0p×1, 4I). We found empirically that Algorithm 2 provided better upper
bounds than Algorithm 1.
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4.2.2 Improving MIO Performance via Warm Starts

We performed a series of experiments on the Diabetes dataset to obtain a
globally optimal solution to Problem (1) via our approach and to understand
the implications of using advanced warm starts to the MIO formulation in
terms of certifying optimality. For each choice of k we ran Algorithm 2 with
fifty random initializations. They took less than a few seconds to run. We used
the best solution as an advanced warm start to the MIO formulation (9). For
each of these examples, we also ran the MIO formulation without any warm
start (we refer to this as “cold start”). Figure 3 summarizes the results. The
figure shows that in the presence of warm starts, the MIO closes the optimality
gap significantly faster than those without advanced warm starts.

Figure 3: The evolution of the MIO optimality gap (in log10(·) scale) for
Problem (1), for the Diabetes dataset with n = 350, p = 64 with and without
warm starts for different values of k. The MIO significantly benefits by advanced
warm starts delivered by Algorithm 2. In all of these examples, the global
optimum was found within a very small fraction of the total time, but the proof
of global optimality came later. As the number of possible solutions grows as(
p
k

)
, it takes longer to prove optimality for k = 31, 35 compared to k = 42.

4.2.3 Statistical Performance

We considered datasets as described in Example 1, Section 4.1—we took
different values of n, p with n > p, ρ with k0 = 10.

Competing Methods and Performance Measures For every example,
we considered the following learning procedures for comparison purposes: (a)
the MIO approach equipped warm starts from Algorithm 2 (annotated as
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“MIO” in the figure), (b) the Lasso, (c) Sparsenet and (d) stepwise regression
(annotated as “Step” in the figure).

We used R to compute Lasso, Sparsenet and stepwise regression using the
glmnet 1.7.3, Sparsenet and Stats 3.0.2 packages respectively, which were all
downloaded from CRAN at http://cran.us.r-project.org/.

For each procedure, we obtained the “optimal” tuning parameter by select-
ing the model that achieved the best predictive performance on a held out
validation set. Once the model β̂ was selected, we obtained the prediction
error as:

Prediction Error = ‖Xβ̂ −Xβ0‖22/‖Xβ0‖22. (53)

We report “prediction error” and number of non-zeros in the optimal model in
our results. The results were averaged over ten random instances, for different
realizations of X, ε. For every run: the training and validation data had a
fixed X but random noise ε.

Figure 4: Figure showing the sparsity (upper panel) and predictive per-
formances (bottom panel) for different subset selection procedures for the
least squares loss. Here, we consider data generated as per Example 1, with
n = 500, p = 100, k0 = 10, for three different SNR values with [Left Panel]
ρ = 0.5, [Middle Panel] ρ = 0.8, and [Right Panel] ρ = 0.9. The dashed line in
the top panel represents the true number of nonzero values. For each of the
procedures, the optimal model was selected as the one which produced the best
prediction accuracy on a separate validation set, as described in Section 4.2.3.

Figure 4 presents results for data generated as per Example 1 with n = 500
and p = 100. We see that the MIO procedure performs very well across all the
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examples. Among the methods, MIO performs the best, followed by Sparsenet,
Lasso with Step(wise) exhibiting the worst performance. In terms of prediction
error, the MIO performs the best, only to be marginally outperformed by
Sparsenet in a few instances. This further illustrates the importance of using
non-convex methods in sparse learning. Note that the MIO approach, unlike
Sparsenet certifies global optimality in terms of solving Problem 1. However,
based on the plots in the upper panel, Sparsenet selects a few redundant
variables unlike MIO. Lasso delivers quite dense models and pays the price
in predictive performance too, by selecting wrong variables. As the value of
SNR increases, the predictive power of the methods improve, as expected. The
differences in predictive errors between the methods diminish with increasing
SNR values. With increasing values of ρ (from left panel to right panel in the
figure), the number of non-zeros selected by the Lasso in the optimal model
increases.

We also performed experiments with n = 1000, p = 50 for data generated as
per Example 1. We solved the problems to provable optimality and found that
the MIO performed very well when compared to other competing methods.
We do not report the experiments for brevity.

4.2.4 MIO Model Training

We trained a sequence of best subset models (indexed by k) by applying
the MIO approach with warm starts. Instead of running the MIO solvers
from scratch for different values of k, we used callbacks, a feature of integer
optimization solvers. Callbacks allow the user to solve an initial model, and
then add additional constraints to the model one at a time. These “cuts”
reduce the size of the feasible region without having to rebuild the entire
optimization model. Thus, in our case, we can save time by building the initial
optimization model for k = p. Once the solution for k = p is obtained, a cut
can be added to the model:

∑p
i=1 zi ≤ k for k = p− 1 and the model can be

re-solved from this point. We apply this procedure until we arrive at a model
with k = 1.

For each value of k tested, the MIO best subset algorithm was set to stop
the first time either an optimality gap of 1% was reached or a time limit of 15
minutes was reached. Additionally, we only tested values of k from 5 through
25, and used Algorithm 2 to warm start the MIO algorithm. We observed that
it was possible to obtain speedups of a factor of 2-4 by carefully tuning the
optimization solver for a particular problem, but chose to maintain generality
by solving with default parameters. Thus, we do not report times with the
intention of accurately benchmarking the best possible time but rather to
show that it is computationally tractable to solve problems to optimality using
modern MIO solvers.

4.3 The High-Dimensional Regime: p� n

In this section, we investigate

(a) the evolution of upper bounds in the high-dimensional regime,

29



(b) the effect of a bounding box formulation on the speed of closing the
optimality gap,

(c) the statistical performance of the MIO approach in comparison to other
state-of-the art methods

4.3.1 Obtaining Good Upper Bounds

We performed tests similar to those in Section 4.2.1 for the p� n regime. We
tested a synthetic dataset corresponding to Example 2 with n = 30, p = 2000
for varying SNR values (see Table 2) over a time of 500s. As before, using the
discrete first order methods in combination with the MIO algorithm resulted
in finding the best possible upper bounds in the shortest possible times.

k
Discrete First Order MIO Cold Start MIO Warm Start
Accuracy Time Accuracy Time Accuracy Time

5 0.1647 37.2 1.0510 500 0 72.2
6 0.6152 41.1 0.2769 500 0 77.1
7 0.7843 40.7 0.8715 500 0 160.7

S
N

R
=

3

8 0.5515 38.8 2.1797 500 0 295.8
9 0.7131 45.0 0.4204 500 0 96.0

5 0.5072 45.6 0.7737 500 0 65.6
6 1.3221 40.3 0.5121 500 0 82.3
7 0.9745 40.9 0.7578 500 0 210.9

S
N

R
=

7

8 0.8293 40.5 1.8972 500 0 262.5
9 1.1879 44.2 0.4515 500 0 254.2

Table 2: The quality of upper bounds for Problem (1) obtained by Algorithm 2, MIO
with cold start and MIO warm-started with Algorithm 2. We consider the synthetic
dataset of Example 2 with n = 30, p = 2000 and different values of SNR. The MIO
method, when warm-started with the first order solution performs the best in terms of
getting a good upper bound in the shortest time. The metric “Accuracy” is defined
in (52). The first order methods are fast but need not lead to highest quality solutions
on their own. MIO improves the quality of upper bounds delivered by the first order
methods and their combined effect leads to the best performance.

We also did experiments on the Leukemia dataset. In Figure 5 we demon-
strate the evolution of the objective value of the best subset problem for
different values of k. For each value of k, we warm-started the MIO with
the solution obtained by Algorithm 2 and allowed the MIO solver to run for
4000 seconds. The best objective value obtained at the end of 4000 seconds is
denoted by f∗. We plot the Relative Accuracy, i.e., (ft − f∗)/f∗, where ft is
the objective value obtained after t seconds. The figure shows that the solution
obtained by Algorithm 2 is improved by the MIO on various instances and
the time taken to improve the upper bounds depends upon k. In general, for
smaller values of k the upper bounds obtained by the MIO algorithm stabilize
earlier, i.e., the MIO finds improved solutions faster than for larger values of k.
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Figure 5: Behavior of MIO aided with warm start in obtaining good upper
bounds over time for the Leukemia dataset (n = 72, p = 1000). The vertical
axis shows relative accuracy, i.e., (ft − f∗)/f∗, where ft is the objective value
obtained after t seconds and f∗ denotes the best objective value obtained by the
method after 4000 seconds. The colored diamonds correspond to the locations
where the MIO (with warm start) attains the best solution. The figure shows
that MIO improves the solution obtained by the first order method in all the
instances. The time at which the best possible upper bound is obtained depends
upon the choice of k. Typically larger k values make the problem harder—hence
the best solutions are obtained after a longer wait.

4.3.2 Bounding Box Formulation

With the aid of advanced warm starts as provided by Algorithm 2, the MIO
obtains a very high quality solution very quickly—in most of the examples
the solution thus obtained turns out to be the global minimum. However,
in the typical “high-dimensional” regime, with p � n, we observe that the
certificate of global optimality comes later as the lower bounds of the problem
“evolve” slowly. This is observed even in the presence of warm starts and
using the implied bounds as developed in Section 2.2 and is aggravated for the
cold-started MIO formulation (10).

To address this, we consider the MIO formulation (54) obtained by adding
bounding boxes around a local solution. These restrictions guide the MIO in
restricting its search space and enable the MIO to certify global optimality
inside that bounding box. We consider the following additional bounding box
constraints to the MIO formulation (10):{

β : ‖Xβ −Xβ0‖1 ≤ L
ζ
`,loc

}
∩
{
β : ‖β − β0‖1 ≤ L

β
`,loc

}
,
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where, β0 is a candidate sparse solution. The radii of the two `1-balls above,
namely, Lζ`,loc and Lβ`,loc are user-defined parameters and control the size of
the feasible set.

Using the notation ζ = Xβ we have the following MIO formulation (equipped
with the additional bounding boxes):

min
β,z,ζ

1
2 ζT ζ − 〈X′y,β〉+ 1

2 ‖y‖
2
2

s.t. ζ = Xβ

(βi, 1− zi) : SOS type-1, i = 1, . . . , p

zi ∈ {0, 1}, i = 1, . . . , p
p∑
i=1

zi ≤ k

−MU ≤ βi ≤MU , i = 1, . . . , p

‖β‖1 ≤M`

−Mζ
U ≤ ζi ≤M

ζ
U , i = 1, . . . , n

‖ζ‖1 ≤Mζ
`

‖ζ − ζ0‖1 ≤ L
ζ
`,loc

‖β − β0‖1 ≤ L
β
`,loc.

(54)

For large values of Lζ`,loc (respectively, Lβ`,loc) the constraints on Xβ (respec-
tively, β) become ineffective and one gets back formulation (10). To see the
impact of these additional cutting planes in the MIO formulation, we consider
a few examples as illustrated in Figures 6,7,8.

Interpretation of the Bounding Boxes. A local bounding box in the
variable ζ = Xβ directs the MIO solver to seek for candidate solutions that
deliver models with predictive accuracy “similar” (controlled by the radius of
the ball) to a reference predictive model, given by ζ0. In our experiments, we
typically chose ζ0 as the solution delivered by running MIO (warm-started
with a first order solution) for a few hundred to a few thousand seconds. More
generally, ζ0 may be selected by any other sparse learning method. In our
experiments, we found that the run-time behavior of the MIO depends upon
how correlated the columns of X are.

Similarly, a bounding box around β directs the MIO to look for solutions
in the neighborhood of a reference point β0. In our experiments, we chose
the reference β0 as the solution obtained by MIO (warm-started with a first
order solution) and allowing it to run for a few hundred to a few thousand
seconds. We observed in our experiments that the MIO solver in presence of
bounding boxes in the β-space certified optimality and in the process finding
better solutions; much faster than the ζ-bounding box method.

Note that the β-bounding box constraint leads to O(p) and the ζ-box leads
to O(n) constraints. Thus, when p � n the additional ζ constraints add a
fewer number of extra variables when compared to the β constraints.
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Experiments In the first set of experiments, we consider the Leukemia
dataset with n = 72, p = 1000. We took two different values of k ∈ {5, 10}
and for each case we ran Algorithm 2 with several random restarts. The best
solution thus obtained was used to warm start the MIO formulation (10),
which we ran for an additional 3600 seconds. The solution thus obtained
is denoted by β0. We then consider formulation (54) with Lζ`,loc = ∞ and

different values of Lβ`,loc = Frac (as annotated in Figure 6) — the results are
displayed in Figure 6.

Figure 6: The effect of the MIO formulation (54) for the Leukemia dataset,
for different values of k. Here Lζ`,loc =∞ and Lβ`,loc = Frac. For each value of k,

the global minimum obtained was the same for the different choices of Lβ`,loc.

We consider another set of experiments to demonstrate the performance of
the MIO in certifying global optimality for different synthetic datasets with
varying n, p, k as well as with different structures on the bounding box. In
the first case, we generated data as per Example 1 with ρ = 0.9, k0 = 5. We
consider the case with ζ0 = Xβ0, Lβ`,loc =∞ and Lζ`,loc = 0.5‖Xβ0‖1, where
β0 is a k-sparse solution obtained from the MIO formulation (10) run with a
time limit of 1000 seconds, after being warm-started with Algorithm 2. The
results are displayed in Figure 7[Left Panel]. In the second case (with data
same as before) we obtained β0 in the same fashion as described before—we
took a bounding box around β0, and left the box constraint around Xβ0

inactive, i.e., we set Lζ`,loc = ∞ and Lβ`,loc = ‖β0‖1/k. We performed two
sets of experiments, where the data were generated based on different SNR
values—the results are displayed in Figure 7 with SNR=1 [Middle Panel] and
SNR = 3[Right Panel].

In the same vein, we have Figure 8 studying the effect of formulations (54) for
synthetic datasets generated as per Example 1 with n = 50, p = 1000, ρ = 0.9
and k0 = 5.
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Figure 7: The effect of the MIO formulation (54) for a synthetic dataset as in
Example 1 with ρ = 0.9, k0 = 5, n = 50, p = 500, for different values of k. [Left
Panel] Lζ`,loc = 0.5‖Xβ0‖1 and Lβ`,loc =∞ for a data-set with SNR = 3. [Middle

Panel] Lζ`,loc = ∞, Lβ`,loc = ‖β0‖1/k and SNR = 1. [Right Panel] Lζ`,loc = ∞,

Lβ`,loc = ‖β0‖1/k and SNR = 3. The figure shows that the bounding boxes in
terms of Xβ (left-panel) make the problem harder to solve, when compared to
bounding boxes around β (middle and right panels). A possible reason is due
to the strong correlations among the columns of X. The SNR values do not
seem to have a big impact on the run-times of the algorithms (middle and right
panels).

4.3.3 Statistical Performance

To understand the statistical behavior of MIO when compared to other ap-
proaches for learning sparse models, we considered synthetic datasets for values
of n ranging from 30 − 50 and values of p ranging from 1000 − 2000. The
following methods were used for comparison purposes

(a) Algorithm 2. Here we used fifty different random initializations around 0,
of the form min(i− 1, 1)N(0p×1, 4I), i = 1, . . . , 50 and took the solution
corresponding to the best objective value.

(b) The MIO approach with warm starts from part (a).

(c) The Lasso solution.

(d) The Sparsenet solution.

For methods (a), (b) we considered ten equi-spaced values of k in the range
[3, 2k0] (including the optimal value of k0). For each of the methods, the best
model was selected in the same fashion as described in Section 4.2.3 using
separate validation sets.

In Figure 9 and Figure 10 we present selected representative results from
four different examples described in Section 4.1.

In Figure 9 the left panel shows the performance of different methods for
Example 1 with n = 50, p = 1000, ρ = 0.8, k0 = 5. In this example, there are
five non-zero coefficients: the features corresponding to the non-zero coefficients
are weakly correlated and a feature having a non-zero coefficient is highly
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Figure 8: The evolution of the MIO gap with varying radii of bounding
boxes for MIO formulation (54). The top panel has radii twice the size of the
bottom panel. The dataset considered is generated as per Example 1 with
n = 50, p = 1000, ρ = 0.9 and k0 = 5 for different values of SNR: [Left Panel]
SNR = 1, [Right Panel] SNR = 3. For each case, different values of k have
been considered. The top panel has a bounding box radii which is twice the
corresponding case in the lower panel. As expected, the times for the MIO gaps
to close depends upon the radii of the boxes. The optimal solutions obtained
were found to be insensitive to the choice of the bounding box radius.

correlated with a feature having a zero coefficient. In this situation, the Lasso
selects a very dense model since it fails to distinguish between a zero and
a non-zero coefficient when the variables are correlated—it brings both the
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Figure 9: The sparsity and predictive performance for different procedures:
[Left Panel] shows Example 1 with n = 50, p = 1000, ρ = 0.8, k0 = 5 and [Right
Panel] shows Example 2 with n = 30, p = 1000—for each instance several SNR
values have been shown.

coefficients in the model (with shrinkage). MIO (with warm-start) performs
the best—both in terms of predictive accuracy and in selecting a sparse set
of coefficients. MIO obtains the sparsest model among the four methods and
seems to find better solutions in terms of statistical properties than the models
obtained by the first order methods alone. Interestingly, the “optimal model”
selected by the first order methods is more dense than that selected by the
MIO. The number of non-zero coefficients selected by MIO remains fairly
stable across different SNR values, unlike the other three methods.

In Figure 9 the right panel shows Example 2, with n = 30, p = 1000, k0 = 5
and all non-zero coefficients equal one. In this example, all the methods
perform similarly in terms of predictive accuracy. This is because all non-zero
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Figure 10: [Left Panel] Shows performance for data generated according to
Example 3 with n = 30, p = 1000 and [Right Panel] shows Example 4 with
n = 50, p = 2000.

coefficients in β0 have the same value. In fact for the smallest value of SNR,
the Lasso achieves the best predictive model. In all the cases however, the
MIO achieves the sparsest model with favorable predictive accuracy.

In Figure 10, for both the examples, the model matrix is an iid Gaussian
ensemble. The underlying regression coefficient β0 however, is structurally
different than Example 2 (as in Figure 9, right-panel). The structure in β0

is responsible for different statistical behaviors of the four methods across
Figures 9 (right-panel) and Figure 10 (both panels). The alternating signs
and varying amplitudes of β0 are responsible for the poor behavior of Lasso.
The MIO (with warm-starts) seems to be the best among all the methods. For
Example 3 (Figure 10, left panel) the predictive performances of Lasso and
MIO are comparable—the MIO however delivers much sparser models than
the Lasso.
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The key conclusions are as follows:

1. The MIO best subset algorithm has a significant edge in detecting the
correct sparsity structure for all examples compared to Lasso, Sparsenet
and the stand-alone discrete first order method.

2. For data generated as per Example 1 with large values of ρ, the MIO
best subset algorithm gives better predictive performance compared to
its competitors.

3. For data generated as per Examples 2 and 3, MIO delivers similar
predictive models like the Lasso, but produces much sparser models. In
fact, Lasso seems to perform marginally better than MIO, as a predictive
model for small values of SNR.

4. For Example 4, MIO performs the best both in terms of predictive
accuracy and delivering sparse models.

5 Computational Results for Subset Selection
with Least Absolute Deviation Loss

In this section, we demonstrate how our method can be used for the best
subset selection problem with LAD objective (47).

Since the main focus of this paper is the least squares loss function, we
consider only a few representative examples for the LAD case. The LAD loss
is appropriate when the error follows a heavy tailed distribution. The datasets
used for the experiments parallel those described in Section 4.1, the difference
being in the distribution of ε. We took εi iid from a double exponential
distribution with variance σ2. The value of σ2 was adjusted to get different
values of SNR.

Datasets analysed We consider a set-up similar to Example 1 (Section 4.1)
with k0 = 5 and ρ = 0.9. Different choices of (n, p) were taken to cover
both the overdetermined (n = 500, p = 100) and high-dimensional cases
(n = 50, p = 1000 and n = 500, p = 1000).

The other competing methods used for comparison were (a) discrete first
order method (Section (3.4)) (b) MIO warm-started with the first order
solutions and (c) the LAD loss with `1 regularization:

min ‖y −Xβ‖1 + λ‖β‖1,

which we denote by LAD-Lasso. The training, validation and testing were
done in the same fashion as in the least squares case. For each method, we
report the number of non-zeros in the optimal model and associated prediction
accuracy (53).

Figure 11 compares the MIO approach with others for LAD in the overde-
termined case (n > p). Figure 12 does the same for the high-dimensional case
(p� n). The conclusions parallel those for the least squares case. Since, in
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the example considered, the features corresponding to the non-zero coefficients
are weakly correlated and a feature having a non-zero coefficient is highly
correlated with a feature having a zero coefficient—the LAD-Lasso selects an
overly dense model and misses out in terms of prediction error. Both the MIO
(with warm-starts) and the discrete first order methods behave similarly—much
better than `1 regularization schemes. As expected, we observed that subset
selection with least squares loss leads to inferior models for these examples,
due to a heavy-tailed distribution of the errors.

Figure 11: The sparsity and predictive performance for different procedures
for n = 500, p = 100 for Problem (47). The data is generated as per Example 1
with ρ = 0.9, k0 = 5 and double exponential errors—further details are available
in the text. The acronym “Lasso” refers to LAD-Lasso (5). The MIO is seen to
deliver sparser models with better predictive accuracy when compared to the
LAD-Lasso.

The results in this section are similar to the least squares case. The MIO
approach provides an edge both in terms of sparsity and predictive accuracy
compared to Lasso both for the overdetermined and the high-dimensional case.

6 Conclusions

In this paper, we have revisited the classical best subset selection problem of
choosing k out of p features in linear regression given n observations using
a modern optimization lens, i.e., MIO and a discrete extension of first order
methods from continuous optimization. Exploiting the astonishing progress of
MIO solvers in the last twenty-five years, we have shown that this approach
solves problems with n in the 1000s and p in the 100s in minutes to provable
optimality, and finds near optimal solutions for n in the 100s and p in the
1000s in minutes. Importantly, the solutions provided by the MIO approach
significantly outperform other state of the art methods like Lasso in achieving
sparse models with good predictive power. Unlike all other methods, the
MIO approach always provides a guarantee on its sub-optimality even if the
algorithm is terminated early. Moreover, it can accommodate side constraints
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Figure 12: Figure showing the number of nonzero values and predictive
performance for different values of n and p for Problem (47) (as in Figure 11).
[Left panel] has n = 50, p = 1000 and [Right panel] has n = 500, p = 1000.

on the coefficients of the linear regression and also extends to finding best
subset solutions for the least absolute deviation loss function.

While continuous optimization methods have played and continue to play an
important role in statistics over the years, discrete optimization methods have
not. The evidence in this paper as well as in [2] suggests that MIO methods
are tractable and lead to desirable properties (improved accuracy and sparsity
among others) at the expense of higher, but still reasonable, computational
times.
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Philip McCord Morse, professor emeritus of physics at the Massachusetts
Institute of Technology (MIT), founder and pioneer of modern operations
research, physicist and Renaissance scientist, community leader, and leader in
professional societies, died on September 5, 1985, in Concord, Massachusetts.
As Phil Morse wrote in his autobiography, In at the Beginnings: A Physicist’s
Life, 1977, “They told me I was born on August 6, 1903, at three in the
morning; I don’t remember. My seventy-year memory tape is a series of
vividly recollected scenes, separated by blanks later filled in with conjecture
and hearsay. The early scenes are disconnected flashes, glimpses of a now
unfamiliar world, seen through a stranger’s eyes. It takes effort to remember
how different that world was, how many differences there are between the
Midwest of 1910 and the East Coast of the 1970s.”

Morse’s distinguished career in science and technology is characterized by
a remarkable breadth and diversity of interests. In physics, it ranged from
acoustics and quantum mechanics to nuclear physics and methods of theoretical
physics. In operations research, which he pioneered, his career encompassed
military operations research, vehicular traffic, queues, and public systems. His
fundamental contributions in these diverse areas, together with his service to
the professional community and society in general, created a most outstanding
career.

His early developmental years were spent in Cleveland, Ohio. He was the
son of a telephone engineer, the grandson of a civil engineer, and the great
grandson of an architect and builder. His great grandfather worked for the
federal government designing and building post offices and custom houses
all over the country and was also elected to the Ohio legislature. While still
in grade school, Morse read voraciously, was attracted to chemistry, and
learned to play the violin. He indicated that while facts didn’t interest him
very much he was excited by patterns, such as the recurrent patterns in the
Mendeleev table of the elements. During high school he decided to become a
chemist. Interestingly, he never aspired to be a mathematician because, he
said, mathematics had been treated as a tool rather than as a subject for
intellectual exploration. Eric Bell’s Men of Mathematics had not yet been
written when Morse made that statement; he later speculated that if the book

4This essay, reprinted with permission of the National Academy of Engineering, appeared
in Memorial Tributes, National Academy of Engineering, Volume 4, National Academy
Press, Washington, D.C., 1991.
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had already appeared he might have become enmeshed in the mysteries of
prime numbers of Diophantine analysis and his entire life might have been
different. As for his nonscholastic interests, when the radio craze hit Cleveland
in the early twenties, Morse operated his own radio supply and repair shop.

After one year of undergraduate study, Morse took the year 1922-23 off to
operate his radio business when family fortunes were at a low ebb. By the fall
of 1923 when he returned to college as a sophomore, he was considerably more
certain about what he wished to learn. Upon deciding to pursue the physics
program, his father’s only comment was, “That’s fine, but what will you do
for money?” It is interesting to read in Morse’s recollections that he didn’t
share this concern for money and that he envisioned a career teaching college
physics. He commented at the time that, “Professors never got rich-but then
they never seemed to starve.”

Morse received his B.S. in 1926 from what was then the Case School of
Applied Science. He pursued his graduate studies at Princeton University
and received his Ph.D. in physics in 1929. It was during his undergraduate
days that he became involved with the eminent American physicist Dayton
C. Miller, who was one of the earliest experts in sound and musical acoustics,
and whose large collection of flutes is now in the Library of Congress. It was
during this period that Morse developed his lifelong interest in acoustics.

Physics and mathematics claimed much of his time as a graduate student at
Princeton. Three courses didn’t sound like much to him, but analytic dynamics,
electron theory and mathematical physics generated a great work load. Unlike
the students of pure mathematics, Morse was interested in analysis and higher
algebra as the language of physics. The late 1920s were exciting times thanks
to the development of the new quantum mechanics; in 1930 Dirac prophesied
accurately that quantum mechanics would explain all of chemistry and most
of physics.

Aside from his course work and research on molecular physics with Ernst
Stueckelberg, with whom he published several papers, Morse developed a
solution for a force that was repulsive when two particles are close together,
attractive when they are further apart, and under which they vanish at a
greater distances. He realized that he had stumbled upon a quantum mechanical
representation of a vibrating diatomic molecule. To this day, the particular force
field, expressed as a related potential field, is known as the Morse Potential.

Edward Condon, upon his return from Europe, where the new quantum
theory had been developed, decided to write an English text on the subject.
When the writing progressed too slowly, he invited Morse to collaborate. The
idea appealed to Morse as an opportunity to learn the rapidly developing
quantum mechanics not only by teaching it but by structuring a monograph
on it. Thus, Morse coauthored one of the earliest texts on the new quantum
theory.

Among his other notable associations, he assisted in the development of the
theoretical understanding of the Davison-Germer experiment during a summer
at the AT&T Bell Laboratories. His postdoctoral studies were conducted with
Arnold Sommerfeld in Munich and included theoretical research in electron
scattering under an international fellowship. Thanks to Morse’s early renown,
Karl T. Compton, then president of MIT, asked Morse to join the MIT physics
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faculty when he returned from his fellowship in Europe. As Morse recounts,
“It was easy to say yes.”

Morse joined the MIT physics faculty in 1931 as assistant professor, rapidly
rose to associate professor in 1934, and became a full professor in 1938. With
his very broadly gauged interests, he participated in the development of the
physics curriculum and accepted the position of gradute registration officer.
His research continued in a diverse fashion; during this period he worked on
electron scattering, nuclear binding forces, and even on the subject of stellar
interiors in astrophysics. One of his important contributions to physics was
the acoustics textbooks Vibrations and Sound published in 1936. This work
presented the application of scattering theory to sound waves. In fact, it was
also during this early period in Morse’s life that he developed course notes that
were later combined with those of Herman Feshbach to produce the famous
two-volume work Methods of Theoretical Physics, published in 1953. The book
is a basic source of methods of mathematical physics to this day.

With the advent of World War II, Philip Morse’s Renaissance talent entered
a new phase in his technical life. By the time the United States entered
the war, the catastrophic loss of allied ships to the German U-boats in the
Atlantic Ocean was a major concern. It was imperative that the U.S. develop
superior equipment that would locate and neutralize this threat. The British,
who had been engaged in the struggle for two years, already had several
operations research groups not only designing equipment but also studying
and maximizing its effectiveness in actual war operations. Early in 1942 the
U.S. armed forces established an operations research group in the navy. Morse,
who was considered a distinguished scientist and who had been the director of
a project at the Underwater Sound Laboratory at Harvard University for the
previous two years, was chosen by the National Defense Research Council to
head the operations research effort.

Several months after the formation of the operations research group, the
navy consolidated the antisubmarine operations under the Tenth Fleet, and
the Antisubmarine Warfare Operations Research Group was transferred to
Washington, DC. Morse had a substantial fraction of the group out in the
field working with the operational commands. He did an outstanding job both
in coordinating the technical work and in his liaison with the operational
leaders running the actual war operations. Those who worked with Morse
during this period report that it was a continuous learning experience. As the
war effort and operations research became more successful, the Antisubmarine
Warfare Operations Research Group became the navy’s Operations Research
Group. This group took on submarine activity studies in the Pacific Theater
of Operations. It then addressed naval air activities and ultimately became
involved in all aspects of navy task force operations. The group became very
well accepted and at the conclusion of the war Morse received the Presidential
Medal for Merit, the nation’s highest civilian award.

After the war Morse generated an orderly windup of the group’s activities,
part of which became the nucleus of the Operations Evaluation Group. He
returned to research and teaching at MIT but continued to monitor this
postwar transition. In 1946, he had been at MIT no longer than one year
when he became the director of the Atomic Energy Commission’s Brookhaven
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National Laboratory. The position occupied all of his time in organization
and administration and left no time for personal scientific research. In 1948,
with Brookhaven well established, Morse went to Washington to organize an
operations research group for the Secretary of Defense and the Joint Chiefs
of Staff. This resulted in the Weapons Systems Evaluation Group for which
he served as deputy director and director of research until 1950. The group’s
civilian unit developed into the Institute for Defense Analyses in 1956; Morse
served as a trustee.

In another area of interest, Morse was convinced of the great importance of
computation and the rapidly growing power of the digital computer. This no
doubt arose from his experience with calculations in acoustics and astrophysics
in the late 1930s. The establishment of the MIT Computation Center was
a result of his efforts to introduce computers to research and research to
computers in the late 1940s and early 1950s. He became its first director and
served in that position until 1967.

In 1952 Morse created an operations research activity at MIT with an
interdepartmental committee and a small contract for fundamental research
from the U.S. Army. In two years, the first doctoral student, John D.C. Little,
was graduated and in 1956 the Operations Research Center was formally
established with Morse as director; he remained in this role until his official
retirement in 1968. His high research activity in the field of operations research
was continuous and included the following books: Queues, Inventories and
Maintenance, 1958; Library Effectiveness: A Systems Approach, 1968; Oper-
ations Research for Public Systems, 1967, coeditor; and Analysis of Public
Systems, 1972, coeditor.

The Operations Research Society of America was founded in 1952, and
as might have been expected, Morse became its first president. Of the next
eight presidents, half had worked for him in one capacity or another, mostly
during World War II. About twenty years later, there came an echo of Morse’s
influence as two of his former students became presidents of the society. Morse
received the Frederick W. Lanchester Prize of the Operations Research Society
in 1968 for his library work and was the first recipient of that society’s George
E. Kimball Medal in 1974 for his contributions to the profession of operations
research in general and to the society in particular.

Professor Morse’s worldwide promotion of operations research never ceased.
He was involved in organizing the first International Operations Research
Conference in 1957; the International Federation of Operations Research
Societies originated at this conference. Interest in the operations research
discipline overseas led to the 1959 NATO conference with Morse as chairman
of the advisory panel. He was associated with many international operations
research projects in which he always stressed that the discipline was applicable
to a host of fundanental problems that were neither military nor industrial in
nature. It is interesting to recall that most recently, in April 1985, at the age
of 81, Morse chaired a session at ORSA’ s Boston meeting and spoke on the
early use of computers in operations research, a topic that combined two of
his major interests.

Morse’s honors are legion. Among these, he was a member of the National
Academy of Sciences; and a fellow of the American Academy of Arts and
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Sciences, the Acoustical Society of America, and the American Physical Society.
He was elected to the National Academy of Engineering in 1985. He was also
a member of Sigma Xi, Tau Beta Pi, and the Cosmos Club of Washington. He
received the Silver Medal of the Operational Research Society of the United
Kingdom, and the Gold Medal of the Acoustical Society of America. He was
the president of the Acoustical Society of America (1974–1977) and chairman
(1975) of the Governing Board of the American Institute of Physics. From
1958 to 1960 he was chairman of the MIT faculty.

Philip Morse, one of the first wave of home-grown American scientists,
made outstanding contributions to science and technology through his work in
physics, computer science and operations research. He influenced and guided
many students and colleagues in the struggle to seek scientific truth. In his
autobiography Morse gives great food for thought to many of us. He reflects
that his successes would have been fewer had he not chosen, back in 1923,
to become a physicist through training that forced him to look facts in the
face, that made him want to measure them and work out their implications,
whether these facts applied to atoms or automobiles.

The last comment of Morse’s autobiography conveys much of his philoso-
phy: “For those who like exploration, immersion in scientific research is not
dehumanizing; in fact, it is a lot of fun. And, in the end, if one is willing to
grasp the opportunities, it can enable one to contribute something to human
welfare.”
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