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Machine Learning – An Opportunity for New
Directions and to Engage with New Areas

Emily Tucker
Ph.D. Candidate,

Industrial and Operations Engineering,
University of Michigan

Machine learning (ML) is part-buzzword, part-
powerful algorithmic toolbox. It’s hyped to

change the world, and people in many fields are
beginning to use its techniques to understand their
systems and make better decisions. As operations
researchers, we spend our careers developing mod-
els to provide insights. There is a range of overlap
between ML and operations research (OR), and
I think the popularity of machine learning gives
us the opportunity to work in new areas and solve
broader, more complex problems.

One of my friends who is a biologist once told
me about a conversation she had with her PhD ad-
visor; while they were discussing possible methods,
her advisor at one point responded with a wave
of her hand, “Oh, why don’t you just do some
machine learning on that.” But neither knew much
of the specifics!

Even a passing mention can be an open door
to a discussion of new techniques. While folks
may not have heard of operations research, we
can discuss how “algorithms” can be used in other
ways as people become more comfortable with the
term. This increase in familiarity may help us work
with our clients and collaborators to choose the
best methods for their problem at hand, whether
it involves clustering, or integer programming, or
other techniques.

Many fields are beginning to use machine learn-
ing to solve complex problems. Astrophysicists
are working to classify galaxies, and information
scientists are analyzing literary text (“How Ma-
chine Vision Is Reinventing the Study of Galaxies,”
2015; Prospero, 2018). The Seattle Seahawks, an
American football team, use ML to try to prevent
injuries (Soper, 2017). Researchers are studying de-
fensive strategies in the NBA (“Machine Learning
Proves Useful for Analyzing NBA Ball Screen De-
fense,” 2016). Recently, Nature published a paper
that discussed how supervised machine learning
and matching algorithms had improved the refugee
assignment process (Bansak et al., 2018).

We don’t need to go far afield though to find
new directions as machine learning naturally par-
allels many of the traditional applications of op-
erations research. Businesses have long struggled
to manage “customer churn” by retaining and re-
cruiting new customers, and ML algorithms can
enhance traditional models by incorporating a wide
range of data to understand customer dynamics,

including analyzing click rates and detailed order
histories.

These insights can improve decision-making in
perhaps unexpected ways (Neff, 2014). Walmart
has found that certain weather conditions correlate
with food purchases; their steaks tend to sell when
it is warm and windy whereas hamburgers do better
when it is warm but less windy. In turn, Walmart
can tailor its advertising down to a zip code-level
based on weather conditions, and as a result, sales
have gone up.

There have also been mountains of OR work in
inventory management, and researchers are start-
ing to use ML and deep learning techniques to im-
prove order quantities and timing (Snyder, 2018).
Rather than separating the problems of estimating
demand distributions and optimizing operational
decisions, researchers have integrated the two by
incorporating ML techniques and found that they
can substantially reduce cost.

ML is popular partly because of its impact and
partly because it is relatively easy to implement,
particularly in contrast to many optimization al-
gorithms. Within R or Python, if you download
the appropriate package, only a few lines of code
are needed to start using machine learning.

A word of caution as we dive deeper, however
the relative ease with which ML algorithms can
be applied can obscure potential biases in their
insights. If we’re not careful, these biases can have
major repercussions on perpetuating inequality
(Mok, 2017) and may cause more problems than
they fix!

If you are interested in learning more, several
online resources including popular courses from
Coursera (Ng, 2018) and helpful notes from Chris
Albon (Albon, 2018) provide instruction in ML
techniques. Many INFORMS student chapters are
also organizing sessions and workshops on machine
learning. Check out the chapter highlights in this
edition for a few examples.

Machine learning and operations research are
natural neighbors (one might even argue nearest-
neighbors?), and I believe there’s an important
and unique role for both. Even basic familiarity
with machine learning may open the door for OR
professionals to start new and unexpected collabo-
rations.
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Machine Learning and Mixed Integer Pro-
gramming

Rahul Swamy
Ph.D. Candidate in Industrial Engineering,
University of Illinois at Urbana-Champaign

In today’s world, advancements in computing
power augmented by the availability of data

has ushered in an unprecedented ability to trans-
form data into useful insights. Machine learning
(ML) has earned its place as a quintessential tool
in any data scientist’s toolbox. Mixed Integer
Programming (MIP) has provided a long-standing
framework for solving large NP-Hard problems to
theoretically-proven optimality and has revolution-
ized many industries such as logistics and trans-
portation. Even though both ML and MIP share
a common trait - using data to influence decision
making - they have [for the large part] been studied
by different research communities. Squarely in the
interface between computer science and operations
research, interesting problems have emerged when
studying ML and MIP together.

The idea behind ML had existed since 1950s
but found prominence much later with the merging

of statistical tools, continuous optimization and
big data. With the boom in Artificial Intelligence,
present day ML has transformed into variations
of Deep Neural Networks (DNNs) and has found
success in applications such as in personal assis-
tants, product recommendations, spam filtering,
among others. For MIPs, the classical branch-and-
bound technique has seen remarkable speed-ups
over the last half a century with theoretical break-
throughs in cutting plane theory, decomposition
techniques, column generation, among others, in
tandem with efficient implementations in commer-
cial solvers. What were once considered ”unsolv-
able” problems can now be solved in a matter of
seconds. For example, the branch-and-cut-based
solver Concorde TSP can solve TSP instances with
more than 85,950 cities as reported in Applegate
et al. (2009). At the outset, ML and MIP may
seem to have different objectives. ML predicts
while MIP solves. However, there are fundamental
problems in both the fields that cross-disciplinary
research can be benefit each other.

Continuous optimization forms the crux of (su-
pervised) ML, with the training phase using a
fraction of the data to learn (optimize) for certain
model parameters. However, the use of discrete
optimization and its solution strategies has been
relatively underexplored in ML literature. Mis-
quoting a visionary who once shot for the moon,
”Ask not what ML can do for MIP - ask what MIP
can do for ML.” In that spirit, some of the MIP
for ML works are highlighted here.

Support vector machines (SVMs) are popular
classification techniques in ML. Early work by Ben-
nett and Demiriz (1999) posed semi-supervised
SVM as an Integer Program and solved it using
CPLEX. For the classic SVM problem with ramp-
loss minimization, Belotti et al. (2016) present a re-
formulation to tackle the big-M constraints. Üney
and Türkay (2006) provide an MIP approach for
a general multi-class classification problem using
hyper boxes to partition the data. Word alignment
is a key component of language translation tools.
Lacoste-Julien et al. (2006) solve this problem
by framing it as a Quadratic Assignment problem.
DNNs have gained popularity in recent years. As a
step towards modeling DNNs using MIP, Fischetti
and Jo (2018) present an MILP model with appli-
cation to feature visualization and adversarial ML.
The latter is a natural setting since it needs opti-
mal solutions that ”fools” the DNN by overfitting
it.

On the other hand, if one indeed asked what ML
can do for MIPs, there are answers to that as well.
The conventional branch-and-bound procedure in-
volves a host of parameters that are typically tuned
ad-hoc to the needs of specific [classes of] problems.
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These parameters decide what the next step should
be at a certain node in the branch-and-bound tree.
Recently, several papers explored how ML can be
used to tune these parameters that decide different
aspects of branching and bounding - Kruber et al.
(2017) on deciding whether Dantzig-Wolfe decom-
position should be used or not, Khalil et al. (2016)
on which variable to branch on, Alvarez (2016)
on branching decisions specific to approximations
to strong branching and Khalil et al. (2017) on
whether a primal heuristic should be used or not.
The idea here is to predict whether making a de-
cision at a node will improve the overall run-time
of the algorithm. The results from these works
provide promising directions for not only generic
MIP solvers, but also for exploring their success in
specific classes of problems.

At his recent plenary talk at EWGLA 2018,
Prof. Andreas Lodi from Polytechnique Montreal
posed an interesting perspective that ML and op-
timization are ”two-sides of the same coin”. There
is a dual nature to an algorithm that solves an
optimization problem and the parameters that can
make it efficient, and there is a need for frameworks
that integrate ML and optimization. While this
article is nowhere close to a literature review, the
goal is to touch upon some of the opportunities in
the intersection of ML and MIP. There are many
more interesting open challenges that must be of
interest to both communities and the future will
tell.
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Machine Learning: Is it really the hero that
the Operations Research community needs?

Siddhartha Nambiar
Ph.D. candidate in Industrial Engineering,

North Carolina State University

About a year ago, I was presenting a poster
outlining my current research at a conference.

My work was about an application of Markov De-
cision Processes, and I had had several people stop
by at my poster to interact with me. Most of the
questions that came my way were easy to deal
with, until one individual asked me something that
motivated me to write this article. His question
was simple – why not just use machine learning to
do this? I’m not going to tell you how I responded
to him because that would require I outline parts
of my research which is outside the scope of this
article. What I will tell you is that it got me think-
ing about how Machine Learning as a buzzword is
used in so many different contexts today. A fellow
student once mentioned to me that he felt graduate
students in Operations Research (OR) and Statis-
tics are at a substantial handicap when compared
to graduate students in Machine Learning (ML),
despite being in substantially overlapping subjects.
While I wasn’t sure if I agreed with the first part of
his statement, the second part resonated with me.
Both ML and OR share foundations in probability
theory, optimization, and linear algebra. There is
little doubt that both OR and ML possess their
own independent domains. OR, as the application
of scientific and mathematical methods to the anal-
ysis of complex systems, was invented during World
War II. ML, as the branch of computer science that
gives computers the ability to learn without be-
ing explicitly programmed, is more recent and has
been around since the 80s.

Since its inception, however, ML has been slow
to catch on. Comparing the interest between the
two fields shows ML only break away after 2010.
Perhaps advances in computational capabilities
played an important role in the rise in popular-
ity of Machine Learning. The interesting ques-
tion then becomes – why has this not extended
to Operations Research? The perceptions among
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practitioners about what the two topics are and
how they contribute to the research community
are variable. As one researcher at Google explains,
perhaps the difference between the two fields is just
semantics. His point is that, at the end of the day,
people are people and could as easily work under
the umbrella of OR as ML. However, he admits
that some ML algorithms sometimes tend to be
‘hacks’; they rely on a ton of methods that depend
on intuition rather than theory.

A paper published in the Journal of Machine
Learning Research in 2006 (Bennet and Parrado-
Hernandez, 2006) looked at how the two fields are
largely intertwined. The authors state that ML
researchers have embraced the advances in opti-
mization thus allowing new types of models to be
pursued. The natural thought that follows then, is
that the difference between the two fields is not as
rooted in theory as it is in semantics and accessi-
bility, the latter being an important factor. Today,
a very large number of people recognize the term
Machine Learning. While this is largely in part due
to our world being overrun by tech companies that
use the term as a means of catching the public’s
attention, nuances in the way that ML is being
taught cannot be ignored. As it stands today, ML
is not something that too many people understand.
When I think about the individual who suggested I
apply ML to my research at the conference, I can’t
blame him. The world we live in is more about
‘using ML’ rather than ‘learning ML’. In other
words, give the man a fish rather than teach him
to fish, because teaching him to fish would involve
teaching him multi-dimensional calculus, advanced
linear algebra, optimization theory, and advanced
probability theory, just to start with. Whether
this is a problem or not is up to the community
to decide. Proponents of the status quo will argue
that this is how academic and technical research
has been taking place for many years and that
ML is no different. But is ML really ‘no different’,
especially now that policy makers in congress are
starting to pay attention to the way ML and AI

are shaping the lives of the public?
In summary, Machine Learning is more popular

than Operations Research because of two reasons.
The first is that the biggest part of the analytic
decision-making process has now been partially
shifted to the machine. The investment in machine
learning is a natural evolution in technology and
humanity’s demand to create technologies that ex-
tend our own capabilities. And while the same
can be said of advancements in Operations Re-
search, the second reason for ML’s popularity is
what really seals the deal – the fact that it works!
And not just in the sense that it provides us with
excellent analytic solutions to difficult problems,
but in the sense that the popularity has caught
on. A direct outcome of this meteoric rise in pop-
ularity is that more and more research is currently
focused on improving existing methods. There is
no doubt that OR benefits from this as well, since
it has become increasingly coupled with ML. How-
ever, whether the semantics of OR can survive the
current outburst in ML interest remains to be seen.
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The Use of Quantitative Methods with Two
Different Perspectives: Data-Centric versus
Problem-Centric

Çağlar Çağlayan
Ph.D. in Operations Research,

Georgia Institute of Technology

Despite the diversity of the data analytics
methods and the variety of business prob-

lems, the quantitative decision science methods can
be grouped into two main categories: data-centric
and problem-centric approaches (Wegryn, 2014;
Rose, 2016). The ultimate purpose of both data-
and problem-centric approaches is the same: to
help decision-makers make better (informed, effec-
tive and efficient) decisions. Yet, usually, the way
they approach a problem is fundamentally differ-
ent (Figure 1). The goal of this article is to briefly
introduce these two “quantitative decision science”
approaches, highlight their differences, and discuss
their roles in better decision-making.

Data-centric approaches, as the name implies,
prioritize the use of data and aims to gain insights
from the data about the problem of interest. Ac-
cordingly, the efforts of the practitioners of data-
centric approaches are primarily concentrated on
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(1) analyzing (including cleaning, summarizing,
and manipulating) data; (2) investigating the ex-
tend of its use and limitations; and (3) generating
new insights from the dataset by applying (and
tailoring) analytical methods, ideally based on jus-
tifiable assumptions that can be validated. Some
means of translating data into new insights, by
applying data-centric approaches, are as follows:
Identifying and quantifying relations between a
key outcome and variables in the dataset (statis-
tical association), detection of systematic changes
that variables exhibit over time (pattern recogni-
tion), and estimating the future course of a key
outcome by modeling the behavior of certain vari-
ables (prediction/forecast). A few examples of
data-centric techniques are time-series analysis, re-
gression models, machine learning methods, and
deep neural networks. The use of data is also

Figure 1: Data- and Problem-Centric Approaches

critical for applying problem-centric approaches
to business problems as the qualities of a dataset
(e.g., its size, the uncertainty around its variables,
etc.) significantly affect the choice of the analytical
model to be used. Yet, instead of data, the pri-
mary focus of the practitioners of problem-centric
approaches is on the business problem itself. The
primary goal is to convert the business problem
into a well-defined analytical problem that can be
modeled and solved. Identifying the decisions to
be made, the key outcome to be improved, and
understanding the mechanisms governing the key
dynamics of the business problem are usually the
initial steps of problem-centric approaches. These
steps are followed by the development of an ana-
lytical model that captures the key dynamics of
the business problem and links these dynamics
to an objective function to be optimized through
the decision variables. The final step is to use
an algorithm that solves the analytical problem
and identifies the optimal decisions generating the

best result(s). A few examples of problem-centric
methods are as follows: deterministic optimization
(e.g., linear and integer programing), discrete-event
simulation, queuing theory, and Markov decision
processes.

Understanding the critical features of the busi-
ness problem and the content and limits of the
dataset are required steps, up to a certain extent,
both for data- and problem-centric approaches.
Whether the primary efforts are concentrated on
extracting information from the data or mathe-
matical modeling of the problem is where data-
and problem-centric methods begin to differenti-
ate. One way to see the difference between these
two approaches is to look at what kind of ques-
tions they address through their validation (and
debugging) efforts. A typical question for a data-
centric approach is the following: Does the em-
ployed quantitative method describe the patterns
and relationships that the dataset manifests with a
high level of accuracy/precision [and hence, can be
trusted to make future predictions]? On the other
hand, a standard question for a problem-centric
technique is as follows: Does the utilized analyt-
ical model correctly capture the key dynamics of
the underlying problem without over-simplification
[and hence, can be used to identify the best course
of action]? As it can be seen by these two sample
questions, a primary concern regarding the valid-
ity of one approach is mainly on the correct use
of the data whereas the validity of the other is
challenged via its capability to capture of the key
problem features. Accordingly, while debugging, a
data-centric method might be dealing with over-
and under-fitting issues while a problem-centric
approach might need to address problems such as
a missing constraint or a wrong objective function.

The differences between data- and problem-
centric approaches are also related with their roles
and objectives. To explain these differences bet-
ter, we can get assistance from a few terms: de-
scriptive, diagnostic, predictive and prescriptive
analysis (Maydon, 2017).

• Descriptive Analysis: The quantitative
description of important information con-
tained in the dataset.

• Diagnostic Analysis: Examination of the
historical course of the process of interest and
identification the relations of system behavior
and process outcomes with the variables in
the dataset.

• Predictive Analysis: Projection of the fu-
ture behavior of the process as a function of
certain variables.
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• Prescriptive analysis: Identification of the

best course of action to be taken to improve
the system/process of interest.

Generally, descriptive and diagnostic analyses
are conducted via data-centric methods; prescrip-
tive analysis is performed by problem-centric tech-
niques; and both data-centric and problem-centric
methods are utilized for predictive analysis.

To conclude, there is a wide range of variety in
analytical methods employed by researchers and
practitioners to solve their business problems. De-
spite the variety, the “quantitative decision science”
techniques can still be placed into one of the fol-
lowing categories, based on how they approach a
problem: data-centric and problem-centric. Gener-
ally, these two perspectives not only have different
ways to help decision-makers, but also conduct
analyses at different dimensions and hence, have
different roles at generating better data-driven de-
cisions. Although it might be unrealistic to expect
from any practitioner to be an expert of both ap-
proaches, it is very beneficial (if not required) to
be familiar with some analytical methods in both
domains to correctly approach a business problem
and to have a better (full-picture) understanding
of the utility of quantitative methods for decision-
making.
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Machine Learning Applications in the En-
ergy Sector

Sepehr Ramyar
Department of Technology & Information

Management,
University of California Santa Cruz

The energy industry, and particularly the power
sector, is undeniably an essential component

of any modern society. In fact, electrification
has been determined as the “greatest engineering
achievement of the 20th century” by the National
Academy of Engineering (NAE, 2018). However,
this mighty engineering achievement of the previ-
ous century faces just as great of challenges in the
21st century that can no longer be addressed using

analytical tools of the past. Increasing scale and
complexity of the power systems, inclusion of new
active players and stake-holders in the power sector,
and rapid evolution of institutions and regulations
that govern and operate the energy industry are
the main reasons that necessitate the application
of robust analytical tools that can efficiently and
effectively address these challenges. Machine learn-
ing has proved to be a powerful tool in extracting
and processing information from large sets of data
and has been used extensively for different applica-
tions in the energy sector. In this article, we will
discuss how machine learning has been applied to
enable a more efficient power system.

The power system traditionally was a monopoly
in which a single utility company produced, trans-
mitted, distributed, and ultimately sold electricity
to end-users. This paradigm, however, started to
change in the 1980’s and 90’s as competition was in-
troduced to the power systems to induce economic
efficiency. In the new framework, power is traded
in an electricity market, usually called the whole-
sale market, in which generators and consumers
(the load serving entities1) bid their supply and
demand quantities and the market consequently
clears under a set of conditions2, optimally allocat-
ing power by merit order: the cheapest producers
(generators) supply electricity to the consumers
with the highest willingness-to-pay. In technical
terms, this is a type of double auction. For exam-
ple, imagine there are three generators respectively
offering 5, 10, and 15 megawatts (MW) for 3, 4,
and 5 dollars per MW ($/MW) for a specific hour
of the day. There are also three consumers bidding
1, 3, and 6 $/MW each demanding 5 MW for the
same time/hour of the day. Then, the least-cost
generator, i.e. the 3 $/MW generator, is allocated
its full 5 MW to meet the demand of the con-
sumer with the highest willingness-to-pay, i.e. the
6 $/MW consumer. Because the remaining two
consumers’ bids are lower than the remaining two
generators’ asks per MW, the generators are not
able to further supply the remaining customers.
Thus, the market clears at 3 $/MW. Each day, a
similar process is repeated for each of the 24 hours
of the following day in what is called a day-ahead
market to determine the price and quantity of the
power to be generated and delivered.

It is evident that if one is able to accurately
predict the market clearing price, then they can
place bids that have a much higher chance of be-

1Load serving entities are electric service providers, i.e.
retail electric providers or municipally owned utilities.

2This is usually referred to as market clearing conditions
that in addition to trying to set demand equal to supply,
also involve physical characteristics of the power grid in
terms of capacity, congestion, etc.
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ing cleared (and compensated). Moreover, the
Independent System Operator (ISO) that operates
the power market wishes to identify and inter-
cept fraudulent bids to limit strategic behavior by
participants. As mentioned before, this auction is
carried out every day for each of the 24 hours of the
following day. This means that there is plenty of
data available to exploit and this is where machine
learning tools come in handy. One particularly
useful method is Support Vector Machine (SVM).
This machine learning technique maps inputs to a
feature space and then the predicted outcome is
calculated as a linear function in the new feature
space. The strength of this method lies in its abil-
ity to linearly separate a dataset even though it
may not be separable in the original space of the
training data. In the case of power price forecast-
ing, the feature space could include elements such
as time (day and/or hour), temperature (max, min,
average), humidity, etc. in the location of demand.
The linearity saves a lot of computation time and
makes SVM a particularly useful analytical tool in
the context of an electricity market. Specifically,
in the real-time market3 (as opposed to day-ahead
markets) the entire bidding and market clearing
process is carried out in a very short time window
(less than five minutes) and consequently it is es-
sential for market participants to be able to carry
out massive computations for predicting the price
is the shortest time possible, and this is where
SVM’s computational efficiency comes in.

Hourly prices for power through a market mech-
anism introduce a host of opportunities for new
businesses to grow in the energy sector. Once par-
ticular example is energy demand management.
This stems from the fact that there are different
energy-consuming activities (e.g. lighting, heating,
electric vehicle charging, etc.) and each consumer
has his own preferences/ranking over them or can
be incentivized to rank them. Using machine learn-
ing algorithms, it is possible to recognize the energy
consumption pattern of each consumer and identify
energy savings opportunities based on the variable
market prices. For example, one can automatically,
using smart energy management systems that run
on machine learning algorithms, shift their elec-
tric vehicle charging from peak hours to off-peak
hours with lower prices. One particularly useful
machine learning tool here is reinforcement learn-
ing. This method dynamically learns and adopts
the behavior that yields maximum reward which
in this context could be translated into monetary

3After the day-ahead market clears and quantities are
determined, there might still be deviations from the alloca-
tions due to unexpected failures or demand surge. These
deviations are settled in the real-time market on the same
day that units are dispatched.

savings. The applicability of the reinforcement
learning in demand management is that no his-
torical data is required, and the algorithm would
be able to navigate and detect optimal action in
real-time.

Scaling up this solution, a new participant
emerges in the power market: aggregators. An
aggregator operates vast fleet of demand manage-
ment systems throughout a community. Each of
these units is capable of identifying consumption
patterns and energy saving opportunities based
on the machine learning algorithms. This energy
saving could be in form of forgoing consumption
(e.g. reduced lighting) or shifting consumption (de-
laying electric vehicle charging to off-peak hours).
The aggregator then bundles or aggregates these
energy savings and offers it to the wholesale mar-
ket in form of demand response i.e. power that
otherwise had to be generated and consumed and
receives compensation in return. In addition, when
the power grid becomes under stress, the ISO can
issue demand response (ask for reduced demand)
and aggregators would then be able to secure the
required demand response from their pool of cus-
tomers and receive (and share) compensation for it.
This guarantees reliability and efficiency of power
systems.

So, we can see how different elements of the cur-
rent institutions that operate power systems can be
improved using machine learning algorithms. By
enabling the computation and extracting informa-
tion from massive data sets, machine learning al-
gorithms have enabled various agents in the power
system such as consumers, generators, market op-
erator, and aggregators to scale up solutions and
effectively exploit new opportunities introduced in
the new energy sector paradigm while at the same
time improving economic efficiency and reliability
of the greatest engineering achievement of the 20th
century.
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A little over a month ago I was connected with
Dr. Yuanyue Liu who is an Assistant Profes-

sor in the Department of Mechanical Engineering
at The University of Texas at Austin. His research
focuses on fundamental and technological problems
in material science related to electronics, optoelec-
tronics, energy conversion and energy storage (e.g.,
transistors, solar cells, batteries/supercapacitors,
electro/photoelectro-catalysis) as well as emerg-
ing materials like 2D materials and topological
materials. His most recognized work involves the
development of a one-step, scalable approach for
producing and patterning porous graphene films
with three-dimensional networks from commercial
polymer films using a CO2 infrared laser (Lin et
al. 2014) and the discovery that oxygen on the
Cu surface substantially decreases the graphene
nucleation density by passivating Cu surface ac-
tive sites (Hao et al. 2013). We were connected
because Dr. Liu needed some assistance in feature
ranking and engineering, i.e. ranking predictor
variables by their impact on the output variable
(feature ranking) and creating new variables from
the existing ones that could better predict the out-
put variable (feature engineering). Dr. Liu shared
many papers with me on how machine learning
(ML) is being employed in material science, and I
was encouraged to dedicate a short article to this
new area of application for ML. So here it goes!
Almost all the papers I read described empirical
testing as very costly and time consuming (Faber
et al. 2016; Li et al. 2017) even though it is the
reason behind the discovery of all industry cata-
lysts known today (Nørskov et al. 2011). Thus,
ML algorithms for predicting molecular properties
are being increasingly explored and helping in pro-
gressing material science at a faster rate than in the
past. For example, Ramprasad et al. (2017) cites
pioneering applications of machine learning in pre-
diction band-gap of insulators, classification into
sp-block and transition metal elements, models to
identify correlations and analytical relationships
between the breakdown field and other easily ac-
cessible material properties such as the band gap
and the phonon cutoff frequency. And the list
goes on. Faber et al. (2016) highlights that even
first-principles methods such as density functional
theory (DFT) for computational prediction of the
existence and basic properties of crystals composed
of only the main group elements (columns I to VIII
in the periodic table) is challenging as just these

elements lead to approximately 2 x 106 possible
elpasolite crystals4 that can potentially be made.
However, ML models are being developed with ac-
curacies close to those of DFT, and only take mil-
liseconds for computations (Montavon et al. 2013;
Rupp et al. 2012). Of course, the datasets repre-
senting material properties are also small because
it’s hard to harness data in this field (Ramprasad
et al. 2017). Additionally, ML models overcome
the trade-off between the versatility of quantum
mechanical models and the relative simplicity of
semi-empirical force fields. Quantum mechanical
models theoretically can be used to study any ma-
terial as they are governed by analytical differential
equations, but these equations are very complex;
in contrast, semi-empirical force fields, based on a
combination of experimental data and electronic
structure calculations on small molecules (Shell
2012), are several orders of magnitude faster but
not as versatile. Thus, semi-empirical force fields
do not perform well on materials for which the
original parameterization were not developed. As
ML models are both fast and transferable (Ram-
prasad et al. 2017), they are gaining popularity
amongst material scientists (Faber et al. 2016).

Domain experts and their ML collaborators
are also focusing on feature engineering. There
is an increasing emphasis on the billions of linear
and non-linear compound descriptions that could
be engineered using algebraic combinations and
mathematical functions (Ramprasad et al. 2017).
This would immediately take us into the space of
feature ranking. I saw the least absolute shrink-
age and selection operator (LASSO) and kernel
ridge regression being used widely. In fact kernel
ridge regression was used in many models I read
about because it works well when attempting to in-
corporate non-linear relationships. An important
aspect of feature selection and engineering that
Ramprasad et al. (2017) talks about is the need
for feature invariance to certain transformations
(some examples of such transformations are spa-
tial rotation, rigid translations, etc.). One of the
models that I found interesting was a kernel ridge
regression-based ML model developed by Faber
et al. (2016) for modeling ”the energy difference
between the crystal energy and the sum of static,
atom-type dependent, averaged atomic energy con-
tributions, obtained through the fitting of each
atomic species in all main group elements up to”
Bismuth (Bi). They built and employed ML mod-
els of formation energies to investigate all possible
elpasolites made up of main-group elements. In
their paper they present numerical results for ap-

4Elpasolite is the predominant quaternary crystal struc-
ture, AlNaK2F6 prototype, reported in the Inorganic Crys-
tal Structure Database.
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proximately 2 x 106 formation energies which, as
discussed earlier, would certainly have been very
challenging using first-principles methods like DFT.
Li et al. (2017) talks about exploiting the a priori
estimation of chemical reactivity of surface metal
atoms given the hierarchical complexities in cata-
lyst design. They build an artificial neural network
model (see Figure 2) chemisorption model that
captures complex, non-linear adsorbate/substrate
interactions and thus facilitates exploration of large
number of catalytic materials.

Z. Li et al. / Catalysis Today 280 (2017) 232–238 235

Fig. 3. Feature engineering in machine-learning chemisorption models for metal catalysis. Geometric features: the local electronegativity and the effective coordination
numbers, electronic features: the local electronegativity, d-band filling, center, width, skewness, and kurtosis, secondary features: the ionic potential, electron affinity, and
Pauling  electronegativity.

coordination number quantified by the interatomic d-d coupling
matrix elements of an adsorption site with its neighboring atoms
up to the second nearest neighbors, defined as,

CNd
i =

2ndnn∑

j=1

Vij
dd

V i,∞
dd

(2)

where  the interatomic d-d coupling matrix element follows [34],
Vdd ∝ (rdi

3/2rdj
3/2/dij

5), rd is the spatial extent of the metal atom’s
corresponding d-orbital, dij is the distance between the atom

i and j in the substrate, and Vi,∞
dd

is the reference interatomic
coupling matrix of pure bulk of the host metal with the fully opti-
mized geometry. The d-d interatomic coupling is chosen because
the d-band characteristics of a transition metal surface site is
largely determining the trend of surface reactivity based on the
d-band chemisorption theory [35]. In this study, we  used the DFT-
optimized bond distances for computing the interatomic coupling
matrix elements. We  note that various classical interatomic poten-
tials, such as the Embedded-Atom Method (EAM) potentials [36],
the bond-order potentials [37], the Finnis-Sinclair potentials [38],
and the effective-medium potentials [39], can be used to optimize
the geometry of large metallic systems very efficiently.

We  introduced several secondary features including the ionic
potential, electron affinity, and Pauli electronegativity, which are
only host-metal dependent and can be fetched from literature or
the periodic table. Inclusion of those environment-independent
properties  is necessary for developing models involving various
different metals at adsorption sites.

3.3.  Developing machine-learning chemisorption models

3.3.1.  Neural network configuration
We set up a feedforward artificial neural network using the

open-source PyBrain code [19]. The network consists of a number
of layers (input, hidden, and output) and each layer includes a few
neurons (nodes) as the processing units. During the training pro-
cess, each neuron receives the sum of weighted input from neurons
of the previous layer and processes the cumulative input through
the activation functions. The sigmoid activation function is imple-
mented for the neurons in the hidden layers and a linear function
is used for the output layer. The nodes in the previous layer and the
subsequent layers are connected by a series of weight parameters,
which will be systematically adjusted using the back propaga-
tion algorithms in the trainer to minimize the mean squared error
between the target function and model hypothesis.

Because the numerical value of different fingerprints could
vary in the order of magnitude, feature standardization (scaling
of numerical features to have the center at 0 and the standard
deviation of 1) is applied routinely to improve the convergence of
gradient-based algorithms. 75% of the available dataset is used as
the training set and the rest 25% of the dataset is used for testing
the model. We  aim to prohibit the ‘over fitting’ of the model, which
generally occurs when the network structure becomes excessively
complicated (over trained) and fails in making predictions of the
unseen data. To determine the optimal network structure with the
most suitable number of neurons, we  use the built-in Cross Valida-
tor module in the PyBrain to do the k-fold cross validation for the
training set (see Fig. 4a). Using the geometry-based primary fea-
tures together with secondary features, the network configuration

Figure 2: Figure adopted from Li et al. (2017).
The authors here are representing a schematic of
their neural net “accelerated catalyst design ap-
proach.”

Sendek et al. (2016) ran all possible LR mod-
els for feature selection. They spoke about the
difficulty of creating features and eventually with
about 20 features they went on to build a logis-
tic regression (LR) model to classify superionic
materials based on ionic conductivity. They were
careful to include negative examples (i.e., they pur-
posely added many poor conductors to the data
used for training and testing) as suggested by Rac-
cuglia et al. (2016). In addition, since they had
a very small dataset and a simplistic LR model,
they ran LR models with all possible combina-
tions of features and attempted to select the best
models using the best LR model. This quickly
led to

∑20
n=1

(
N
k

)
= 1, 048, 575 models being tested.

Finally, they chose the model with the least mis-
classification rate using metrics such as the training
misclassification rate between the predicted and
observed the cross-validated misclassification rate
using leave-one-out cross-validation (LOOCV).

In conclusion, I noticed that kernel ridge re-
gression and LOOCV were popular modeling ap-
proaches (later due to scarcity of data). Ram-
prasad et al. (2017) provides a survey of many

number of parameters with non-zero regression coefficients.37

Clearly, both the model precision and DoF exhibited high
correlation with training data and the improvement of precision
was strongly associated with higher model DoF.
To unveil the underlying relationship between data size, DoF,

and precision, a mediation analysis was conducted as illustrated in
Fig. 3. In the mediation analysis, three variables are chosen as
predictor, outcome and mediator and their relations are explored
through statistical significant test.38 In our study, the predictor
variable was data size, the outcome variable was RMSE (precision)
and the mediator variable was DoF. All binary associations of
RMSE with data size, RMSE with DoF, data size, and DoF were
statistically significant (p«0.01, t-test). Entering DoF in the
regression greatly reduced the strength of the correlation
between RMSE and data size and the p-value in t-test was
increased by more than 10 orders of magnitude, confirming that
the influence of data size on predictive precision was mediated by
model complexity. Therefore, instead of affecting the precision
directly, the variation of data size altered the DoF of optimized
model, which then changed the accuracy of prediction. Naturally,
this mediation effect resulted in the association between DoF and
predictive precision as observed in Fig. 2b.
To examine whether the choice of ML method affects the

conclusion that the effect of data size on the model precision is
mediated by the DoF, we also analyzed the models established
with the least absolute shrinkage and selection operator (LASSO)
regression. The CV-RMSE to predict Eg using LASSO method was
0.71 eV. The less accuracy was probably attributed to the failure to
capture the complicated physics with a linear regression
algorithm. Figure 4a shows the selection of LASSO model using
varied training sets. The decreasing of RMSE was associated with
smaller tuning parameter of LASSO model, λ. In LASSO method,
the tuning parameter determines the shrinkage of regression
coefficient. A smaller λ applies less penalty for shrinkage, hence
permitting the inclusion of more features in the optimized model.
As shown in Supporting Information, Figure S1, the association
between RMSE and DoF was clearly evidenced. Through the
mediation analysis we confirmed that the influence of data size on
predictive precision was mediated by the DoF of LASSO models
(Supporting Information, Figure S2). These results demonstrated
the precision–DoF association as a general statistical phenomenon
when the model is trained with small sized materials data rather
than a unique observation dependent on the choice of regression
method.
These results reveal the influence of materials dataset on

establishing ML model as following. Ideally, an ML model should
be established to exhibit hidden relations between the property
and features determined by the underlying physics. However, in

practice, the ML model is constructed to best describe the
structure in training data. Any change of internal pattern in
training set will lead to the change of ML model. Especially, for
models trained with small materials dataset, the DoF to select
features is sensitive to the availability of training data. While
inadequate selection of expressive features causes the under-
fitting of property, adding more training data allows the inclusion
of more features to alleviate the issue of underfitting. Conse-
quently, the predictive precision is improved with the cost of
higher model complexity, resulting in the observed precision–DoF
association.
Although it originates from the fundamental statistics, the

precision–DoF association is more than just a statistical phenom-
enon. Because the association occurs as a result of the under-
fitting, the predicting error is largely dominated by
characteristically large bias, which prevents to establish accurate
predictive rules. In the above study, even the “best” model
showed worse performance than modern density functional
theory prediction of Eg. Therefore, the development of effective
strategy to improve model precision without the cost of higher DoF
becomes a crucial challenge to practice ML in modeling materials
properties.

Strategy
In principle, the improvement of precision can be approached by
appropriately manipulating the training data. For example, we can
naturally consider adding more examples to the training set.
However, simply expanding the dataset not only leads to highly
complex model difficult to interpret the embedded physics but
also is likely hindered by the expensive cost to conduct additional
experiments. Using the empirical relation established from Fig. 1,
doubling the data size roughly leads to the decrease of error by
23%. Hence the exponentially growing cost challenges the
feasibility to improve the accuracy by adding new materials data.
A model can be also constructed by restricting the configurational
space of materials, such as predicting the band gaps of selected
families of semiconductors with fixed composition or crystalline
structure instead of modeling compounds spanning a wide

Fig. 3 Mediation analysis on the relationship of data size and
precision (RMSE) mediated by model DoF. The top numbers are the
standardized regression coefficients and standard errors in the
bracket. The bottom numbers show the p-value in t-test

Fig. 4 Effect of data size (n) on the averaged cross-validation RMSE
of LASSO models for predicting experimental band gaps. The
orange circles is the position of the optimized models

A strategy to apply machine learning to small materials
Y Zhang and C Ling

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2018)  25 

Figure 3: Lasso root mean square error results on
5-fold cross-validation done by Zhang and Ling
(2018)

Exercise 3: Elastic modulus of zeolites
The above two cases used the experimental values of Eg and κL as
the training property and the precision of ML model was
consequently affected by the uncertainty associated with different
measurement techniques. In many studies the training set of
property is created through high-throughput simulation where
the uncertainty of measurements is better controlled. To examine
the performance of the proposed strategy in the prediction of
simulation derived properties, we modeled the Voigt–Reuss–Hill
averaged bulk and shear moduli (K and G, respectively) of zeolites.
Evans and Coudert31 recently calculated K and G for over one
hundred silica zeolites by means of the DFT method and used
gradient boosting regressor to predict the DFT calculated values.
Their ML model achieved significantly better predictive accuracy
when compared to force fields for prediction of bulk modulus. For
five classical force fields, the prediction of bulk modulus showed
large deviation from DFT values with systematic errors exhibited in
some calculations. Here we used the dataset of Evans and Coudert
and established new ML models by incorporating the force field
calculation as an additional descriptor in the feature space. Figure
6 compared the three-fold CV RMSE of different ML models for the
prediction of log(K). In general, the integration of CEP from force
field calculation improved the precision with RMSE reduced by
around 50%. Similarly improved predictive precision was also
observed for the prediction of log(G) (Supporting Information,
Figure S6). Interestingly, although the Catlow potential gave better
prediction of DFT-calculated bulk modulus compared to other
classical potentials,31 the corresponding ML models had the
second worst predictive accuracy. As shown in the insertion of Fig.
7, the RMSE was strongly correlated to the relative influence of
CEPs in the ML model. Therefore, the improved predictive
precision was attributed to the statistical relation of CEP with
the property but not to its absolute value.

DISCUSSION
We summarized the results from the cases studies in Table 1. All
these studies utilized the available dataset of around 100
examples, which in our opinion represented a lower limit to
apply ML in materials research. Although these studies varied in
terms of data source, method to obtain CEP, the algorithm to
select appropriate features, and regression method, in the vicinity

of including CEP as a descriptor the predictive capability was
effectively boosted with scaled error well below the trend
observed in the aforementioned survey, demonstrating the
capability of the proposed strategy in constructing accurate ML
models with small available materials data. Of importance is that
the success of proposed strategy relies on the statistical relation of
CEP and property instead of requiring sufficiently accurate
estimation of targeted property itself, which places the minimal
hurdle to design appropriate descriptor. Considering the vast
number of models and methods to empirically predict materials
properties, we are optimistic that our proposed strategy permits a
general solution to bridge machine learning techniques and the
conventional wisdom of materials scientists to create better
predictive models.
Developing the method to harvest the trend in a small materials

data is not only of scientific significance but also of practical
importance. Many materials properties are available in the
quantity typically of the size of one to a few hundreds,
necessitating the needs of special care when attempting to
establish ML model. The current work studied the fundamental
interplay between the data volume and predictive precision. We
demonstrated that instead of affecting the precision directly the
effect of data volume is mediated by the model DoF, resulting in
the precision–DoF association when the model is trained with
limited availability of materials data. The appearance of
precision–DoF association is a signal of statistical underfitting
and characterized by large bias of prediction, hence restricting the
predictive capability in unknown domains. A solution to establish
accurate ML models with small materials data is proposed by
incorporating the CEP as a descriptor. In three case studies, the
usage of crude estimation effectively boosted the predictive
capability of ML models to state-of-art levels, demonstrating the
generality of the proposed strategy to construct accurate ML
models using small materials data.

METHODS
Data preparation
Property dataset. Except for indium nitride, the band gaps of AxBy binary
compounds with experimental values in the range of 0.5–6 eV were
compiled from two handbooks.50,51 For indium nitride we used the value
of 0.77 eV from the latest measurement by Wu et al.52 Interestingly, the

Fig. 7 Root mean square error of gradient boosting regressor to
predict the bulk modulus (log(K)) of silica zeolite using crude
estimation from different classical force field calculations. The RMSE
of the model not using crude estimation is also shown. Insertion: the
relative influence of different classical force field calculations in the
machine learning model

Table 1. Summary of the results from case studies of modeling the
experimental band gap (Eg), lattice thermal conductivity(κL), and
elastics of zeolite (log(K))

Property Eg κL log(K)

Data volume 108 93 102

Scaled error (%) 6.2 4.1 6.1

Scaled error
before (%)

9.3 6.2 13

DoF 9 5 -a

DoF before 12 7 -a

Source of
property

Experiment Experiment DFT

Source of CEP DFT Empirical model Force field
calculation

Regression
method

Kernel ridge Kernel ridge Gradient
boosting

Feature
selection

Stepwise
forward search

Stepwise
forward search

—
a

aFollowing the same approach used in ref. 31 no feature selection was
performed for log(K)
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Figure 4: Root mean square errors from a gradient
boosted model implemented by Zhang and Ling
(2018)

more applications of classification, clustering, re-
gression, etc., in the material science community.
They also highlight that future work can focus
on building adaptive models that can handle new
data points while updating themselves easily but
also producing strong predictions for cases where
data is different from all prior information (this
is the canonical bias-variance trade-off in machine
learning). They also talk about the need for uncer-
tainty quantification, the importance of elucidating
uncertainty in predictions, and the scope for in-
verse modeling. Zhang and Ling (2018) also nicely
discuss many ways of employing ML in material

11



Spring/Summer 2018
science where they explore multiple methods like
LASSO and gradient boosted trees (see Figures 3
and 4). One of the main hurdles facing the material
science community when employing ML is insuf-
ficient data (Ramprasad et al. 2017; Zhang and
Ling 2018). Generating data is time consuming
and expensive, and material science datasets often
are very wide. However, there is a lot of scope
for building ML models that can help progress re-
search in material science at a faster and cheaper
rate.
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Machine Learning and Ethnography: A Mar-
riage Made in Heaven

Tatiana Gherman
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Simply stated, the essence of operations research
is the creation of models to support better

decision-making. Although ‘modelling’ is regarded
as being the key term here, it is essential that
we do not prioritize modelling at the expense of
the ‘better decision-making’ element. At the end
of the day, modelling that does not unlock value
to improve decision-making is, in practical terms,
useless.

Nowadays, in the context of the exponentially-
growing data, developed models are being auto-
mated using methods of machine learning, whose
applications have an enormous ‘appetite’ for data.
It is not too bold to say that over the past years,
machine learning and predictive analytics together
have been revolutionizing our society by transform-
ing the growing data into predictions that support
the decision-making process (Lee, Shin, & Realff,
2018). While it might be true that applying ma-
chine learning techniques to the decision-making
process can translate into a competitive advan-
tage, a lot can go wrong along the way, especially
when dealing with emergent human dynamics in
the data, which can lead to inaccurate predictions.

When we speak about machine learning algo-
rithms, we generally imagine a lot of ‘crunching’
of data points; but it’s not just about a simple
and brute computational force. From a purely cog-
nitive computing perspective, the development of
artificial models using machine learning techniques
resembles the ability of human learning; in other
words, it is the way to educating computers on how
to perform complex tasks. The question is, can we
teach algorithms to learn better? In machine learn-
ing, “a computer program is said to learn from
experience E with respect to some class of tasks T
and performance measure P, if its performance at
tasks in T, as measured by P, improves with expe-
rience E” (Mitchell, 1997, p. 2). Machine learning
needs large datasets to learn, which implies that
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rather than relying on statistically relevant sam-
ples, as much data as possible is instead collected
and analysed (Butterworth, 2018). In other words,
“machine learning aims to build programs that de-
velop their own analytic or descriptive approaches
to a body of data, rather than employing ready-
made solutions such as rule-based deduction or the
regressions of more traditional statistics. They do
so through repeated trials, following each of which
error is identified and fed back into the system,
and adjusting the approach for each subsequent
trial” (Lowrie, 2017, p. 4).

In order for machine learning algorithms to
automatically learn from the existing data, data
is trained to reduce prediction errors and then is
tested for feature extraction. But to what extent
exactly can prediction errors be diminished? A
quite common problem has to do with ‘overfitting’,
which occurs when a machine learning algorithm
tries too hard to hit every data point exactly, adapt-
ing itself too much to the noise in the data. It is
rather obvious that understanding the data to un-
cover the underlying causes for the fluctuations in
the data is essential; this is even more relevant if,
as mentioned before, we deal with emergent hu-
man dynamics. While computational techniques
are continuously being developed to address these
aspects, few research efforts are actually consider-
ing the potential brought about by a different kind
of approach that by excellence is able to provide
deep insights into human behaviour: ethnography.

The aim of ethnography is to provide a detailed
description of the phenomena under study. It in-
volves systematic research and analysis, grounded
in evidence, and it can provide insights that can
lead to new hypotheses or revisions of existing the-
ory or understanding of social life. Ethnography
can offer a richer understanding of the data, of the
social context from which the data comes.

Generally speaking, machine learning and
ethnography are conceptualized as polar ends of
a research spectrum; nonetheless, there is more
common ground than is obvious at first glance –
in many ways, they have a shared purpose. As
noted above, machine learning algorithms can go
wrong and they often do go wrong. And sometimes
the reason for going wrong resides not in technical
details, but in the fact that not enough effort has
been dedicated to understanding the social con-
text from which data comes. In order to develop
machine learning applications that work better for
society, we must be able to understand what the
society looks like from inside a particular context
and articulate particular stances. Together, ma-
chine learning and ethnography can provide a more
comprehensive picture of data, and can generate
more societal value than each approach on its own

(Charles & Gherman, 2018). As of today, mixed
methods research that combine machine learning
and ethnographic approaches is still rather scarce;
but, as the discussion about the greater good in
machine learning is heating up, this type of work
will grow on a greater scale. There is a scope for
expanding the common ground between machine
learning and ethnography.

The future of machine learning is not just about
crunching more data points, but instead it is about
asking deeper and more insightful questions. Inter-
national Data Corporation (IDC) predicts that the
digital data created worldwide will grow from 4.4
zettabytes in 2013 to 44 zettabytes by 2020 and 180
zettabytes by 2025, still there is a lot of unexplored
potential. As Rattenbury and Nafus (2018) ele-
gantly stated in a recent interview with regards to
the common ground between data science/machine
learning and ethnography, “[. . . ] there’s a lot of
potential in collaborating to illuminate the systems
that create data. Part of that potential [. . . ] will
be realized by leveraging the different epistemolog-
ical assumptions behind our respective approaches.
For example, there is unquestionable value in using
statistical models as a lens to interpret and fore-
cast sociocultural trends—both business value and
value to growing knowledge more generally. But
that value is entirely dependent on the quality of
the alignment between the statistical model and
the sociocultural system(s) it is built for. When
there are misalignments and blind spots, the door
is opened to validity issues and negative social
consequences, such as those coming to light in the
debates about fairness in machine learning. There
are real disconnects between how data-intensive
systems currently work, and what benefits soci-
eties.”
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INFORMS Minority Issues Forum Spot-
light

Lewis Ntaimo, Professor, Department of
Industrial and Systems Engineering at Texas

A&M University

The Minority Issues Forum (MIF) has been
an active and vibrant forum for INFORMS

members interested in minority issues in OR/MS
since 2004. The objectives of MIF are to 1) foster
minority representation in OR/MS; 2) develop ties
between those interested in increasing the number
of minority participants in OR/MS; and 3) dissem-
inate information about the issues that minority
researchers and practitioners face. The 2018-2019
MIF board has the following membership:

Figure 5: MIF 2018-2019 board members

President - Lewis Ntaimo (Texas A&M Univer-
sity), Vice President – Ruben Proano (Rochester
Institute of Technology), Treasurer – Jamol Pen-
der (Cornell University), Secretary – Jessye Talley
(Morgan State University), Programs Co-Chair–
Karen Hicklin (North Carolina at Chapel Hill),
Programs Co-Chair – Eduardo Perez (Texas State
University), Junior Programs Chair – Trilce Encar-
nacion (Rensselaer Polytechnic Institute), Commu-
nications Co-Chair – Shannon Harris (Ohio State
University), Communications Co-Chair – Laila
Cure (Wichita State University), and Immediate
Past President – Maria Mayorga (North Carolina
State University). For the next two years the
goal of MIF is to go beyond the progress that it
has achieved so far. Specific goals include increas-
ing the number of regular and graduate student
members; improving visibility and participation of
the minority and underrepresented at INFORMS;
and growing the MIF financial portfolio to enable
more activities. Every year MIF hosts three main
events at INFORMS: 1) Student Poster competi-
tion; 2) Paper Competition; and 3) Early Career

Award. MIF encourages people in the OR/MS
community who are passionate about minorities
issues to join the forum and participate in it’s activ-
ities as judges or financial contributors to support
them.

The purpose of the MIF Student Poster Com-
petition is to highlight and promote the research
of underrepresented students and their advisors.
While the MIF poster session has been in place
since 2004, the poster competition began in 2012.
Since then, MIF has sponsored the travel of un-
derrepresented minority graduate students who
participate in the poster session and need financial
support. The competition takes place during the
MIF Reception at INFORMS. Final judging takes
place live by a panel of distinguished volunteer
“celebrity judges”. The finalists are announced
at the end of the reception and the first-place
winner receives a monetary award. The winners
of the 2017 MIF Sixth Poster Competition were
Gian-Gabriel P. Garcia (University of Michigan)
and Toyya A. Pujol (Georgia Tech) while Honor-
able Mention awards went to Donald Richardson
(University of Michigan) and Lauren N. Steimle
(University of Michigan).

Figure 6: 2017 Student Poster Competition Final-
ists

MIF started the Paper Competition in 2016
to promote and bring visibility to recent contribu-
tions of MIF members in the field of operations
research, management science, or information sys-
tems. The motivation stemmed from the desire to
feature work from younger scholars within the MIF
population because it is often difficult to be rec-
ognized within the larger INFORMS community.
Submissions must have been accepted or published
within the past two years of the award year and
are judged based on significance of contribution to
theory or practice, novelty and technical strength
of methodology, significance and clarity of results,
conclusions being reasonable and supported, and
organization and quality of exposition. The final-
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ists present their work in a dedicated session at the
annual conference, and the first-place winner re-
ceives a monetary award. The finalists of the 2017
MIF Second Paper Competition were Alp Akcay
and Canan G. Corlu for their paper, “Simulation
of inventory systems with unknown input mod-
els: a data-driven approach”; Michelle Alvarado
and Lewis Ntaimo for their paper, “Chemotherapy
appointment scheduling under uncertainty using
mean-risk stochastic integer programming”; Esra
Büyüktahtakin, and Joseph C. Hartman for their
paper, “A mixed-integer programming approach to
the parallel replacement problem under technologi-
cal change”; and Maria Mayorga, Emmett Lodree,
and Justin Wolczyncski for their paper, “The opti-
mal assignment of spontaneous volunteers”. First
Place was awarded to Michelle Alvarado (Univer-
sity of Florida) and Lewis Ntaimo. MIF is grateful
to the following who served as judges: Dr Karen
Hicklin (North Carolina State University), Illya
Hicks (Rice University) and Mark Lewis (Cornell
University). In 2016, MIF also launched the Early
Career Award. The purpose of the MIF Early
Career Award is to recognize outstanding contri-
butions to the theory or practice of OR/MS and
service made by active members of MIF. The award
recognizes exceptional researchers who have shown
promise at the beginning of their academic or in-
dustrial career. Eligible applicants include scholars
who are MIF members, pre-tenure, and within
eight years of receiving their doctorate (or equiv-
alent) degree. Individuals are either nominated
or self-nominated and submit a C.V., two-page
statement, and one letter of recommendation. A
panel of three judges evaluate nominees based on
research (potential and accomplishments to date
considering intellectual merit and broader impact)
and service (service to broader OR/MS community
and the MIF community).

MIF is grateful and acknowledges the valu-
able financial support from the following univer-
sities which enabled them to carry out the above-
described activities: Cornell University (ORIE),
Clemson University, Georgia Tech University, Uni-
versity of Maryland, University of Michigan, North
Carolina State University, Northwestern Univer-
sity, The Ohio State University (Fisher College of
Business), Texas A&M University (ISEN), Uni-
versity of Wisconsin-Milwaukee, Copper Spon-
sorship, Columbia University, North Carolina
A&T State University, Cornell (Johnson School
of Business), and University of Pittsburgh (Katz
School of Business). The announcements for
the MIF activities are sent out in April and
the deadline for submission is in August. The
MIF contact email is mif.informs@gmail.com for
those interested in participating. For more infor-

mation on MIF, visit http://connect.informs.

org/minorityissuesforum/home.

Student Chapter Spotlight: Northeastern
University

The INFORMS Student Chapter at Northeast-
ern University was established in 2015 with

fewer than 50 members. Since then, our members
have grown in number to 231 and have organized
more than 20 events throughout 2017 and early
2018. Our student chapter aims to bring our mem-
bers in closer contact with current OR and ana-
lytics issues and techniques in both academic and
non-academic environments.

In Fall 2017, we organized a series of machine
learning tutorials using Python taught by one of
our own PhD candidates. It began with an intro-
duction to Python and then continued bi-weekly
to cover Näıve Bayes, Support Machine Vector,
Decision Trees, Random Forest and Evaluation
Metrics. We ended the semester with a talk by Dr.
Rina Schneur, the 17th INFORMS president and
former Director of Business Analytics at Verizon.

With the new board of officers elected in late
2017, the direction of our student chapter has ex-
tended to embrace more collaboration with internal
and external organizations as we look to organize
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high- quality and proactive events. We plan to take
advantage of the opportunity of being in the heart
of Boston where many companies and organization
headquarters are located. We have also continued
to organize tutorial and seminar sessions to accom-
modate the needs of our members. In Spring 2018,
we held two tutorials and three seminar sessions.
We were delighted to have Northeastern’s Data
Analytics and Visualization Specialist give a tuto-
rial on “Data Visualization with Tableau” and to
have a professor from our College of Engineering
provide a tutorial session on Deep Learning. For
the seminar session, we invited an alumnus who is
currently working in the Massachusetts Health Pol-
icy Commission to talk about designing healthcare
policy and using analytics from the perspective of
a practitioner. We were also proud to have Wayfair
and Teradata representatives deliver seminars in
which they discussed new methods and techniques
in the analytics world. To encourage members to

use the data visualization techniques they learned
in the tutorial sessions, we organized a “Data Visu-
alization Hackathon.” We used public data sets for
Boston and allotted 6 hours for the participants to
analyze the data and produce several visualizations
to address the problem of study. The participants
then printed their visualizations into the provided
template and presented them to the judges. Win-
ners of the hackathon received Amazon gift cards
and university mugs. The program gathered 28
teams with a total of 72 participants and received
great feedback to continue this event in future.
We also introduced a new series of events called
“Optimize your Connection” in collaboration with
the Department of Mechanical and Industrial En-
gineering. We reserved 45 minutes to one hour for
selected PhD students to meet with invited speak-
ers so they could discuss and ask questions about
the speakers’ research, academic experience, and
more. In the Spring 2018 series, we were honored to
have Dr. Gun Udomsawat from the United States

Postal Service, Dr. Jean-Francois Cordeau from
University of Montreal, Dr. Karen Zheng from
MIT, and Dr. Barry Nelson from Northwestern
University sit down with our students.

Another new program launched this year is
ProBono Analytics. We gathered a number of
interested members to work on several pro bono
projects. We initiated the program by meeting
with non-profit organizations in a “speed-dating”
environment organized by the Center of Commu-
nity Service at Northeastern. We met and pre-
sented the objective of the program and received
great responses from the organizations. With an in-
tended 3-4 months project timeline, we launched 3
projects in early March with 5-6 members for each
project. The program was first introduced by the
larger INFORMS organization and was applied by
our chapter to help our members use their problem
solving and analytical skills with real-world data
sets. This summer, we are looking to partner with
other student chapters to create a standardized
workflow for an independent ProBono Analytics
program to better streamline the process so that
the valuable program can help not only the non-
profits but our members as well.

Our members receive a weekly newsletter in the
spring and fall semesters that provides day-of event
reminders as well as advertisements for upcoming
events. Our newsletter also contains a section on

16



Spring/Summer 2018
“Success Stories” where we announce newly pub-
lished papers, awards, and other accomplishments
of our members.

In the coming fall semester, we plan to or-
ganize more social events, such as Trivia Night
and a game show called “JeORpardy.” We are
looking to continue our efforts in collaborative
events with undergraduate organizations such as
Northeastern University’s Institute of Industrial
and Systems Engineers (IISE) to promote opti-
mization work, as well as to encourage more un-
dergraduates to continue working in operations
research and analytics. We would like to expand
this collaborative effort to other student chapters,
as well as learn about the events other student
chapters have organized, so that we can share pro-
gram content and further promote INFORMS. To
subscribe to our newsletter, please email inform-
snu@gmail.com, and to learn more about us, fol-
low us on Facebook and Twitter at INFORMS
at Northeastern University or visit our website at
https://web.northeastern.edu/informs/.

Student Chapter Highlights

University at Buffalo

Spring 2018 was the most eventful semester
for INFORMS student chapter at University

at Buffalo (UB INFORMS). We had 21 events,
beating our own previous record of 15 events (Fall
2017)! These events were highly diverse, spanning
apparel sale, alumni talks (from two ex-presidents
of our chapter!), pro-bono analytics projects, re-
search seminars, software/technology workshops,
officer elections, and general meetings. Addition-
ally, considering that our chapter is growing both
in terms of the quality and quantity of events and
in terms of engaging with the student body and
the community, we have been working on improv-
ing the organizational and functional framework
of our chapter. We had a meeting in the first
week of May, exclusively for revising/updating our
constitution/by-laws. The idea is to have such a
meeting at the end of each academic year, so that
constitution/by-laws are updated systematically.

We celebrated the end of a successful year in the
last week of the semester with a ”darts-social” mix.
The chapter is looking forward to another, more
eventful year ahead with the newly elected officers,
and also, to its first ever quarter-zip apparel that
will be delivered soon!

Koç University

Since its establishment in 2000, the INFORMS
Student Chapter at Koç University, the Industrial
Experience Society (IES) has sought to be a family
with a professional environment, while embracing
the values of hard work, integrity, honesty and
sincerity. The members of IES are chosen with
a democratic electoral system and come from a
variety of faculties, including nursing, engineer-
ing, administrative science & economics and social
sciences.

The aim of IES is to assist its members and the
participants of its projects on the formation of their
career path. This is achieved by the presentation
of several career opportunities through different
activities such as LEAP, The One, Be Pro, IndEx
and BOM. All of our organizations are simulations
of different career paths. For instance, LEAP aims
to support young entrepreneurs, whereas IndEx
brings together C-Level managers of different cor-
porations with 500 participants.

IES is member of IAESTE, INFORMS and
EMT because IES values expending its relations
with different communities and developing their
ideas. For more information you can check out our
social media platforms using the name ”ieskocuni”.

University of Michigan

INFORMS at the University of Michigan (UM)
supports and encourages the academic, social, and
professional pursuits of its student members, the In-
dustrial and Operations Engineering Department,
and wider INFORMS-related community. This
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past year, our chapter hosted many initiatives to
serve our community (through OR, of course!).
Two of our most successful events include innova-
tive fundraising seminars which combined fundrais-
ing with state-of-the-art OR research.

The first event was Engineering Resilience,
where Byron Tasseff, Dr. Sara Shashaani, and
Dr. Pascal Van Hentenryck presented their work
on using data-driven analytics for mitigating, re-
sponding to, and recovering from natural disasters.
Fundraising efforts for this event totaled over $900
for the victims of Hurricanes Harvey, Irma, and
Maria.

The second event, Movember, focused on men’s
health issues including prostate cancer, testicular
cancer, and mental health. Participants abstained
from shaving throughout November and raised a
total of $1440. The event culminated in a men’s
and women’s mustache competition and a seminar
by Dr. Brian Denton on his research group’s re-
cent advances in detecting and treating prostate
cancer using machine learning and optimization
techniques.

Other highlights this year include our Health-
care Journal Club, International Movie Night Se-
ries, Pro-bono Initiatives, and the Data-driven
NCAA Bracket Challenge.

Mississippi State University

The INFORMS Student chapter at Mississippi
State University is an organization which is com-
mitted to encourage and develop interest in the
fields of operations research (OR) and management
science (MS). We provide a means of communica-
tion and networking among people with interests
in OR/MS. We also provide an informal means of
exchange about OR/MS educational programs and
opportunities. We share information among stu-
dents by conducting a number of activities which
include Speaker Seminars, Professional Training
Workshops, and Career Development Events, to
list a few. In 2018, the INFORMS Student chap-
ter at Mississippi State organized workshops on
Artificial Neural Networks, MATLAB, and Super-
computing. We were lucky to have Dr. Jessica L.
Heier Stamm, Assistant Professor, Department of
Industrial and Manufacturing Systems Engineer-
ing, Kansas State University visit this February.
She shared some of her research experiences with
the members and provided guidance on ways to
cope with professional challenges. We also hosted
Dr. Halit Üster, Professor in the Department of
Engineering Management, Information, and Sys-
tems at Southern Methodist University in April
2018. In addition to presenting his recent research,
he made some valuable suggestions to make the IN-
FORMS student chapter more successful. We are
planning to organize more workshops and events
both in this summer and upcoming Fall that will
include the members of other on-campus student
organizations. The goal is to extend the knowledge
of OR and MS to other student communities and
promote collaborative efforts. We would like to
collaborate with INFORMS student chapters at
other universities as well. We believe collabora-
tion at a larger scale would add new dimensions
to the success of the INFORMS student chapter
at Mississippi State University.

Texas A&M University
The INFORMS Student Chapter at Texas

A&M’s primary mission is serving its community
and students well. The A&M student chapter
hosted a #gradTax phone-a-thon last fall where al-
most 100 students and faculty pledged to call/email
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Texas legislators to protest the proposed tax on
graduate student tuition (and hey, it worked!). We
participated in both the local SPARK conference
and an Engineering Open House, where our mem-
bers hosted STEM activities for elementary school-
ers. We are also partnering with an elementary
school to support an after-school engineering club
(first activity: a shortest path obstacle course!).
We try to balance the needs of students pursing
academic and industry careers. Our industry af-
fairs team invited some of our graduate alumni in
the healthcare, construction, retail, and chemical
industries to conduct a panel on preparing for jobs
in industry. We also had a Faculty Search Process
panel, where various faculty and one of our post-
doctoral students offered advice for navigating the
academic job hunt.

This semester, we piloted student-led work-
shops, including crash-courses in Linear and Non-
linear Programming, Machine Learning, Integer
Programming, and JMP software. But, as you
know, all work and no play are no good, so we
also hosted a professor-student karaoke party for
a mid-semester break! Finally, we rounded out
the semester with a little bit of scandal: during
our end-of-semester potluck, we discovered that
the winner of the ”Best Dish” award used a store-
bought sauce in their chicken-quinoa curry! To see
what else we are working on, consider following
our chapter on Facebook and Twitter.
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